5 resultados para Radial distribution function

em Aquatic Commons


Relevância:

90.00% 90.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): As part of a study of climatic influences on landslide initiation, a statistical analysis of long-term (>40 years) records of daily rainfall from 24 Pacific coastal stations, from San Diego to Cape Flattery, disclosed an unexpected result - the square root of the daily rainfall closely approximates a normal distribution function. ... This paper illustrates the use of the square-root-normal distribution to analyze variations in precipitation along the mainland United States Pacific Coast with examples of orographic enhancement, rain shadows, and increase in precipitation frequency with geographic latitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I simulated somatic growth and accompanying otolith growth using an individual-based bioenergetics model in order to examine the performance of several back-calculation methods. Four shapes of otolith radius-total length relations (OR-TL) were simulated. Ten different back-calculation equations, two different regression models of radius length, and two schemes of annulus selection were examined for a total of 20 different methods to estimate size at age from simulated data sets of length and annulus measurements. The accuracy of each of the twenty methods was evaluated by comparing the back-calculated length-at-age and the true length-at-age. The best back-calculation technique was directly related to how well the OR-TL model fitted. When the OR-TL was sigmoid shaped and all annuli were used, employing a least squares linear regression coupled with a log-transformed Lee back-calculation equation (y-intercept corrected) resulted in the least error; when only the last annulus was used, employing a direct proportionality back-calculation equation resulted in the least error. When the OR-TL was linear, employing a functional regression coupled with the Lee back-calculation equation resulted in the least error when all annuli were used, and also when only the last annulus was used. If the OR-TL was exponentially shaped, direct substitution into the fitted quadratic equation resulted in the least error when all annuli were used, and when only the last annulus was used. Finally, an asymptotically shaped OR-TL was best modeled by the individually corrected Weibull cumulative distribution function when all annuli were used, and when only the last annulus was used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, wind wave prediction and analysis in the Southern Caspian Sea are surveyed. Because of very much importance and application of this matter in reducing vital and financial damages or marine activities, such as monitoring marine pollution, designing marine structure, shipping, fishing, offshore industry, tourism and etc, gave attention by some marine activities. In this study are used the Caspian Sea topography data that are extracted from the Caspian Sea Hydrography map of Iran Armed Forces Geographical Organization and the I 0 meter wind field data that are extracted from the transmitted GTS synoptic data of regional centers to Forecasting Center of Iran Meteorological Organization for wave prediction and is used the 20012 wave are recorded by the oil company's buoy that was located at distance 28 Kilometers from Neka shore for wave analysis. The results of this research are as follows: - Because of disagreement between the prediction results of SMB method in the Caspian sea and wave data of the Anzali and Neka buoys. The SMB method isn't able to Predict wave characteristics in the Southern Caspian Sea. - Because of good relativity agreement between the WAM model output in the Caspian Sea and wave data of the Anzali buoy. The WAM model is able to predict wave characteristics in the southern Caspian Sea with high relativity accuracy. The extreme wave height distribution function for fitting to the Southern Caspian Sea wave data is obtained by determining free parameters of Poisson-Gumbel function through moment method. These parameters are as below: A=2.41, B=0.33. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by above function with the wave data of Neka buoy is about %35. The 100-year return value of the Southern Caspian Sea significant height wave is about 4.97 meter. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by statistical model of peak over threshold with the wave data of Neka buoy is about %2.28. The parametric relation for fitting to the Southern Caspian Sea frequency spectra is obtained by determining free parameters of the Strekalov, Massel and Krylov etal_ multipeak spectra through mathematical method. These parameters are as below: A = 2.9 B=26.26, C=0.0016 m=0.19 and n=3.69. The maximum relative error between calculated free parameters of the Southern Caspian Sea multipeak spectrum with the proposed free parameters of double-peaked spectrum by Massel and Strekalov on the experimental data from the Caspian Sea is about 36.1 % in spectrum energetic part and is about 74M% in spectrum high frequency part. The peak over threshold waverose of the Southern Caspian Sea shows that maximum occurrence probability of wave height is relevant to waves with 2-2.5 meters wave fhe error sources in the statistical analysis are mainly due to: l) the missing wave data in 2 years duration through battery discharge of Neka buoy. 2) the deportation %15 of significant height annual mean in single year than long period average value that is caused by lack of adequate measurement on oceanic waves, and the error sources in the spectral analysis are mainly due to above- mentioned items and low accurate of the proposed free parameters of double-peaked spectrum on the experimental data from the Caspian Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We modeled the probability of capturing Pacif ic mackerel (Scomber japonicus) larvae as a function of environmental variables for the Southern California Bight (SCB) most years from 1951 through 2008 and Mexican waters offshore of Baja California from 1951 through 1984. The model exhibited acceptable fit, as indicated by the area under a receiver-operating-characteristic curve of 0.80 but was inconsistent with the zero catches that occurred frequently in the 2000s. Two types of spawners overlapped spatially within the survey area: those that exhibited peak spawning during April in the SCB at about 15.5°C and a smaller group that exhibited peak spawning in August near Punta Eugenia, Mexico, at 20°C or greater. The SCB generally had greater zooplankton than Mexican waters but less appropriate (lower) geostrophic f lows. Mexican waters generally exhibited greater predicted habitat quality than the SCB in cold years. Predicted quality of the habitat in the SCB was greater from the 1980s to 2008 than in the earlier years of the survey primarily because temperatures and geostrophic flows were more appropriate for larvae. However, stock size the previous year had a larger effect on predictions than any environmental variable, indicating that larval Pacific mackerel did not fully occupy the suitable habitat during most years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.