4 resultados para RESPIRATORY SYMPTOMS

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the family Gammaridae are very closely interrelated. There arises the question as to how far they also differ amongst themselves through physiological characteristics. Comparative respiratory and physiological experiments were made on the five euryhaline species Gammarus locusta, G. oceanicus, G. salinus, G. zaddachi and G. duebeni. The respiratory measurements carried out within the framework of this experiment were occupied with the relationships between oxygen consumption and body size depending on salinity. They also had the object of determing the variations in metabolic intensity after an abrupt change in the salt content of the external medium, and to establish the period of time for the process of adaptation. As the experiments were carried out polarographically in a testing plant with continuous flow-through, and the method which was applied permitted continuous recording over prolonged intervals, there could also be carried out comparisons between metabolism at rest and under activity, and the alterations of oxygen consumption during the process of moulting could be measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sub-lethal toxicity tests, such as the scope-for-growth test, reveal simple relationships between measures of contaminant concentration and effect on respiratory and feeding physiology. Simple models are presented to investigate the potential impact of different mechanisms of chronic sub-lethal toxicity on these physiological processes. Since environmental quality is variable, even in unimpacted environments, toxicants may have differentially greater impacts in poor compared to higher quality environments. The models illustrate the implications of different degrees and mechanisms of toxicity in response to variability in the quality of the feeding environment, and variability in standard metabolic rate. The models suggest that the relationships between measured degrees of toxic stress, and the maintenance ration required to maintain zero scope-for-growth, may be highly nonlinear. In addition it may be possible to define critical levels of sub-lethal toxic effect above which no environment is of sufficient quality to permit prolonged survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algae are the most abundant photosynthetic organisms in marine ecosystems and are essential components of marine food webs. Harmful algal bloom or “HAB” species are a small subset of algal species that negatively impact humans or the environment. HABs can pose health hazards for humans or animals through the production of toxins or bioactive compounds. They also can cause deterioration of water quality through the buildup of high biomass, which degrades aesthetic, ecological, and recreational values. Humans and animals can be exposed to marine algal toxins through their food, the water in which they swim, or sea spray. Symptoms from toxin exposure range from neurological impairment to gastrointestinal upset to respiratory irritation, in some cases resulting in severe illness and even death. HABs can also result in lost revenue for coastal economies dependent on seafood harvest or tourism, disruption of subsistence activities, loss of community identity tied to coastal resource use, and disruption of social and cultural practices. Although economic impact assessments to date have been limited in scope, it has been estimated that the economic effects of marine HABs in U.S. communities amount to at least $82 million per year including lost income for fisheries, lost recreational opportunities, decreased business in tourism industries, public health costs of illness, and expenses for monitoring and management. As reviewed in the report, Harmful Algal Research and Response: A Human Dimensions Strategy1, the sociocultural impacts of HABs may be significant, but remain mostly undocumented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen consumption in Oreochromis mossambicus, Peters (3-60g in weight) was measured under different stress conditions at a constant temperature of 20±1°C. The rate of oxygen consumption was significantly higher (0.170 ml gˉ¹hˉ¹)at a salinity of 30x10ˉ³ compared with that (0.132ml gˉ¹hˉ¹) in freshwater. The oxygen consumption was also found to be affected by changes in pH. Weight specific rate decreased significantly from 0.113 to 0.045 ml gˉ¹hˉ¹ with increasing body weight. A positive correlation was recorded between availability of dissolved oxygen and the rate of oxygen consumption by the fish. While copper sulphate and malachite green inhibited the respiratory metabolism, formaldehyde treatment raised it from 0.088 to 0.118ml gˉ¹hˉ¹.