5 resultados para RESPIRATORY BURST
em Aquatic Commons
Resumo:
The effects of stress on the immune system of various fish species including dab Limanda limanda, flounder Platichthys flesus, sea bass Dicentrarchus labrax and gobies Zosterisessor ophiocephalus, were investigated from laboratory and field experiments, using various assays to measure immunocompetence, correlated with histological and ultrastructural observations. Modulation of the immune system was demonstrated at tissue, cellular and biochemical levels following exposure to various stressors. The spleen somatic index was depressed in dab stressed in the laboratory and gobies collected from polluted sites in the Venice Lagoon. Differential blood cell counts consistently showed an increase in phagocytes and decrease in thrombocytes in fish exposed to various stressors. Phagocytic activity from spleen and kidney adherent cells was stimulated in dab stressed by transportation but depressed in fish exposed to chemical pollutants. Respiratory burst activity in phagocytic cells was also stimulated in stressed dab but depressed in sea bass exposed to cadmium. The results are discussed in relation to current concepts on stress in fish and the regulation of the immune system.
Resumo:
Effect of aqueous leaf extracts of Catheranthus roseus, Calotropis gigantium and Datura stromoneum on common carp, Cyprinus carpio were investigated. C. carpio were separately fed with 1 and 2% aqueous extracts of these three plant leaves for a period of seven days. In 1% Catheranthus roseus of leaf extract fed group no significant tissue level changes were recorded. One and 2% of other two species fed treated group showed mild to severe necrotic and cellular changes in liver, kidney and spleen. Immunologically, significant rise in antibody titre and respiratory burst activity was recorded for 1% Catheranthus roseusfed group.
Resumo:
Members of the family Gammaridae are very closely interrelated. There arises the question as to how far they also differ amongst themselves through physiological characteristics. Comparative respiratory and physiological experiments were made on the five euryhaline species Gammarus locusta, G. oceanicus, G. salinus, G. zaddachi and G. duebeni. The respiratory measurements carried out within the framework of this experiment were occupied with the relationships between oxygen consumption and body size depending on salinity. They also had the object of determing the variations in metabolic intensity after an abrupt change in the salt content of the external medium, and to establish the period of time for the process of adaptation. As the experiments were carried out polarographically in a testing plant with continuous flow-through, and the method which was applied permitted continuous recording over prolonged intervals, there could also be carried out comparisons between metabolism at rest and under activity, and the alterations of oxygen consumption during the process of moulting could be measured.
Resumo:
Sub-lethal toxicity tests, such as the scope-for-growth test, reveal simple relationships between measures of contaminant concentration and effect on respiratory and feeding physiology. Simple models are presented to investigate the potential impact of different mechanisms of chronic sub-lethal toxicity on these physiological processes. Since environmental quality is variable, even in unimpacted environments, toxicants may have differentially greater impacts in poor compared to higher quality environments. The models illustrate the implications of different degrees and mechanisms of toxicity in response to variability in the quality of the feeding environment, and variability in standard metabolic rate. The models suggest that the relationships between measured degrees of toxic stress, and the maintenance ration required to maintain zero scope-for-growth, may be highly nonlinear. In addition it may be possible to define critical levels of sub-lethal toxic effect above which no environment is of sufficient quality to permit prolonged survival.
Resumo:
Oxygen consumption in Oreochromis mossambicus, Peters (3-60g in weight) was measured under different stress conditions at a constant temperature of 20±1°C. The rate of oxygen consumption was significantly higher (0.170 ml gˉ¹hˉ¹)at a salinity of 30x10ˉ³ compared with that (0.132ml gˉ¹hˉ¹) in freshwater. The oxygen consumption was also found to be affected by changes in pH. Weight specific rate decreased significantly from 0.113 to 0.045 ml gˉ¹hˉ¹ with increasing body weight. A positive correlation was recorded between availability of dissolved oxygen and the rate of oxygen consumption by the fish. While copper sulphate and malachite green inhibited the respiratory metabolism, formaldehyde treatment raised it from 0.088 to 0.118ml gˉ¹hˉ¹.