104 resultados para RESERVOIR OPERATION
em Aquatic Commons
Resumo:
This article outlines the outcome of work that set out to provide one of the specified integral contributions to the overarching objectives of the EU- sponsored LIFE98 project described in this volume. Among others, these included a requirement to marry automatic monitoring and dynamic modelling approaches in the interests of securing better management of water quality in lakes and reservoirs. The particular task given to us was to devise the elements of an active management strategy for the Queen Elizabeth II Reservoir. This is one of the larger reservoirs supplying the population of the London area: after purification and disinfection, its water goes directly to the distribution network and to the consumers. The quality of the water in the reservoir is of primary concern, for the greater is the content of biogenic materials, including phytoplankton, then the more prolonged is the purification and the more expensive is the treatment. Whatever good that phytoplankton may do by way of oxygenation and oxidative purification, it is eventually relegated to an impurity that has to be removed from the final product. Indeed, it has been estimated that the cost of removing algae and microorganisms from water represents about one quarter of its price at the tap. In chemically fertile waters, such as those typifying the resources of the Thames Valley, there is thus a powerful and ongoing incentive to be able to minimise plankton growth in storage reservoirs. Indeed, the Thames Water company and its predecessor undertakings, have a long and impressive history of confronting and quantifying the fundamentals of phytoplankton growth in their reservoirs and of developing strategies for operation and design to combat them. The work to be described here follows in this tradition. However, the use of the model PROTECH-D to investigate present phytoplankton growth patterns in the Queen Elizabeth II Reservoir questioned the interpretation of some of the recent observations. On the other hand, it has reinforced the theories underpinning the original design of this and those Thames-Valley storage reservoirs constructed subsequently. The authors recount these experiences as an example of how simulation models can hone the theoretical base and its application to the practical problems of supplying water of good quality at economic cost, before the engineering is initiated.
Resumo:
PDF contains 94 pages.
Resumo:
The principal sources of surface-water supplies inBaker County are the St. Marys River and its tributaries. However, the flow of many of the small tributaries is intermittent, and without storage they are not dependable sources of supply during sustained periods of deficient rainfall. Of the six stream-gaging stations in Baker County for which complete records are available, one has been in operation for 31 years and provides a long-term record upon which to base correlative estimates for extending the short-term records at the other stations. All available streamflow data to 1957 have been summarized in graphic or tabular form. The hydrologic balance between minimum streamflows and increased evaporation losses afforded by potential shallow reservoirs provides design criteria for determining the maximum surface area of effective reservoir that can be created at a selected site within Baker County. This information has been presented in graphic and tabular form in the report. (PDF has 37 pages.)
Resumo:
In response to nuisance growths of algae and vascular plants, such as dioecious hydrilla ( Hydrilla verticillata L.f. Royle), copper formulations have been applied in lakes and reservoirs for a number of years. Concerns have arisen regarding the long-term consequences of copper applications and those concerns have appropriately focused on sediment residues. In this study, we evaluated the toxicity of sediments from treated (for a decade) and untreated areas in Lake Murray, South Carolina and estimated the capacity of those sediments to bind additional copper. Two sentinel aquatic invertebrates, Hyalella azteca Saussure and Ceriodaphnia dubia Richard, were used to measure residual toxicity of treated and untreated sediments from the field and after laboratory amendments. (PDF has 5 pages.)
Resumo:
Population characteristics of largemouth bass (Micropterous salmoides L.) including growth, body condition (relative weight), size structure, survival, and fecundity were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla Hydrilla verticillata L.f. Royle) in three major embayments of Lake Seminole, Georgia. Relative weight, fecundity, and growth of large-mouth bass in the Spring Creek embayment (76% areal SAV coverage) was considerably less than measured in the Chattahoochee and Flint river arms that contained lower SAV coverages (26% and 32%). It took fish 1.8 years longer to reach 406 mm in Spring Creek compared to the Chattahoochee-Flint arms. Consequently, fish were smaller in Spring Creek than in the Chattahoochee-Flint arms. In addition, due to slower growth rates and lower fecundity-to-body weight relation, we predicted a 47% reduction in total potential ova production in Spring Creek compared to the other two reservoir embayments. The annual survival rate of 3 to 10 year old largemouth bass was higher in Spring Creek (84%) than in the Chattahoochee-Flint arms (72%) and suggested either lower harvest and/or lower accessibility of particularly larger fish to angling in dense vegetation. Contrary to our expectaions, the fit between number-at-age and age in a catch-curve regression was weaker for fish collected in Spring Creek and suggested greater recruitment variability has occurred over time in this highly vegetated embayment. In Lake Seminole, spatial differences in largemouth bass population characterstics were associated with disparate levels of SAV. Our data suggest that a reduction in hydrilla, but maintenance of an intermediate level of SAV in Spring Creek, should improve largermouth bass population in this arm of the reservoir.
Resumo:
This paper advocates strategies, processes and practices that enable: livelihoods approaches rather than resource-based approaches, ‘direct’ institutional and policy development, rather than ‘project demonstrations’, and support for regional, national and local communications. (Pdf contains 12 pages).
Resumo:
Established in early 2002, STREAM Vietnam has so far attained a number of good experiences and lessons in using participatory approaches for its work. The Country Office has been able to link to a wide range of stakeholders, and is working hard to build close relationships amongst them, so that institutional entities can better support the livelihoods of poor aquatic resources users, and support disadvantaged groups of people to improve their living standards by themselves. Reservoir fisheries and co-management are at early stage in Vietnam, but in certain places and industries co-management has brought about successful results by involving proactive participation of communities. Situated on the same continent and having many similarities, the interaction in agriculture and fisheries sector between Vietnam and Sri Lanka has brought the two countries closer. Being members of the STREAM family, there are great opportunities for exchange of experiences and lessons towards sustainable management of reservoir resources. (PDF has 11 pages.)
Resumo:
(PDF contains 141 pages)
Resumo:
This document is part of a series of 5 technical manuals produced by the Challenge Program Project CP34 “Improved fisheries productivity and management in tropical reservoirs”. Inland capture fisheries in India have declined in recent years, leaving thousands of fishers to sink deeper into poverty. Freshwater aquaculture in small water bodies like ponds now contributes 80% of the country¡¯s inland fish production. This manual outlines the use of small reservoir for freshwater aquacultureas a means of providing rural areas with food and livelihoods and protecting aquatic ecosystems, in particular by facilitating the conservation of indigenous fish species. (PDF contains 22 pages)
Resumo:
The growth of Sarotherodon (Tilapia) niloticus in Opa reservoir, University of Ife was determined from the fish scales. Compared with the growth in other similar water bodies the growth was comparatively faster in this newly-impounded reservoir
Resumo:
The phytoplankton distribution of the Shen Reservoir, Bukuru in the Jos Plateau, Nigeria was monitored at 6 depths. Higher floral abundance occurred within the upper 00-03 meters with highest values at the first 1 meter. Bacillariophyceae and Dinophyceae recorded higher values in March-April with lower values in July and January respectively. Phytoplankton were most abundant in the rainy season. Secchi disc transparency was lowest in the peak of the rainy season (July) due to higher levels of suspended matter resulting from the increased run-off from surrounding farmlands of allochthonous materials as well as higher levels of phytoplankton population arising from the former factor. The low water temperature of December/January 15 degree C plus or minus 2 degree C might have depressed growth among the major groups of plankters but enhanced rapid multiplication of the Chlorophyta, Trachelomonas which showed a bloom at this season
Resumo:
Details are given of fisheries activities carried out in Bakolori Reservoir within the context of many and varied functions of Sokoto Rima River Basin Development Authority. Experimental fishing was conducted for 55 days in 1979 when the reservoir was only one year old and the exercise continued in 1980 and 1981 also for 85 and 52 days respectively. During the exercise, the catch per unit effort showed an increasing trend with increasing efforts by four times to that of the initial. The fish harvest was 1.205 kg/day when 3.8 nets were operated in 1979, this went up to 3.2 kg when the number of nets were increased to 8.37/day in 1980. This increasing trend continued in 1981 season also when 16.15 nets caught 5.756 kg fish per day. A direct relationship was observed in the fishing efforts and catch. Tilapia, Clarias, Labeo, Schilbe and Synodontis spp, were the most predominant fish species in the catch and contributed more than 97% of the total fish harvest
Resumo:
In an effort to evaluate the production potential of an artificial impoundment, the phytoplankton of the Shen reservoir was sampled from November 1981 to June 1982 at three stations during three periods of distinct seasonal hydrographic characteristics. The samples were subsampled and quantified. Most of the phytoplankton were identified to the species level. There were in all 53 species comprising Chlorophyceae contributing 36.70% with species of Volvox, Pediastrum, Closterium, Staurodesmus and Ankistrodesmus as dominant species in this group. The Cyanophyceae contributed 30.00% with species of Microcystis, Nostoc , and Oscillatoria as the dominant species. An analysis of temporal and spatial changes in composition and abundance of the various groups showed that these were influenced by water temperature, sampling period and station. Based on the trophic status of the most abundant species, the composition of the phytoplankton is indicative of a tropical reservoir with a moderate productivity for fish culture
Resumo:
The paper examines the feasibility of a small-scale integrated fish and poultry farming project based on an existing experimental model currently in operation at the Kainji Lake Research Institute, New Bussa, Nigeria. Financial analysis reveals a viable investment based on the output from a 2 ha fish pond or reservoir
Resumo:
The distribution of Oreochromis niloticus was studied in Opa reservoir (Nigeria) using a graded set of gillnets while the food and feeding habits were studied using a castnet to collect the fish samples. About 90% of the fish specimens were caught near the reservoir bottom while about 69% of the specimens were caught within the inshore area of the reservoir. The species fed mainly on detritus, algae and higher plants. Feeding rhythm in O. niloticus started around 6.00 a.m. and reached a peak by 3.00 p.m. but then declined gradually until 6.00 p.m. These results can be utilized for the proper management of the fish species in the reservoir