6 resultados para Public address systems

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of self-contained, low-maintenance sensor systems installed on commercial vessels is becoming an important monitoring and scientific tool in many regions around the world. These systems integrate data from meteorological and water quality sensors with GPS data into a data stream that is automatically transferred from ship to shore. To begin linking some of this developing expertise, the Alliance for Coastal Technologies (ACT) and the European Coastal and Ocean Observing Technology (ECOOT) organized a workshop on this topic in Southampton, United Kingdom, October 10-12, 2006. The participants included technology users, technology developers, and shipping representatives. They collaborated to identify sensors currently employed on integrated systems, users of this data, limitations associated with these systems, and ways to overcome these limitations. The group also identified additional technologies that could be employed on future systems and examined whether standard architectures and data protocols for integrated systems should be established. Participants at the workshop defined 17 different parameters currently being measured by integrated systems. They identified that diverse user groups utilize information from these systems from resource management agencies, such as the Environmental Protection Agency (EPA), to local tourism groups and educational organizations. Among the limitations identified were instrument compatibility and interoperability, data quality control and quality assurance, and sensor calibration andlor maintenance frequency. Standardization of these integrated systems was viewed to be both advantageous and disadvantageous; while participants believed that standardization could be beneficial on many levels, they also felt that users may be hesitant to purchase a suite of instruments from a single manufacturer; and that a "plug and play" system including sensors from multiple manufactures may be difficult to achieve. A priority recommendation and conclusion for the general integrated sensor system community was to provide vessel operators with real-time access to relevant data (e.g., ambient temperature and salinity to increase efficiency of water treatment systems and meteorological data for increased vessel safety and operating efficiency) for broader system value. Simplified data displays are also required for education and public outreach/awareness. Other key recommendations were to encourage the use of integrated sensor packages within observing systems such as 100s and EuroGOOS, identify additional customers of sensor system data, and publish results of previous work in peer-reviewed journals to increase agency and scientific awareness and confidence in the technology. Priority recommendations and conclusions for ACT entailed highlighting the value of integrated sensor systems for vessels of opportunity through articles in the popular press, and marine science. [PDF contains 28 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic agricultural systems (AAS) are systems in which the annual production dynamics of freshwater and/or coastal ecosystems contribute significantly to total household income. Improving the livelihood security and wellbeing of the estimated 250 million poor people dependent on AAS in Bangladesh, Cambodia, the Philippines, the Solomon Islands and Zambia is the goal of the Worldfish Center-led Consortium Research Program (CRP), “Harnessing the development potential of aquatic agricultural systems for development.” One component expected to contribute to sustainably achieving this goal is enhancing the gender and wider social equity of the social, economic and political systems within which the AAS function. The CRP’s focus on social equity, and particularly gender equity, responds to the limited progress to date in enhancing the inclusiveness of development outcomes through interventions that offer improved availability of resources and technologies without addressing the wider social constraints that marginalized populations face in making use of them. The CRP aims to both offer improved availability and address the wider social constraints in order to determine whether a multi-level approach that engages with individuals, households and communities, as well as the wider social, economic and political contexts in which they function, is more successful in extending development’s benefits to women and other excluded groups. Designing the research in development initiatives to test this hypothesis requires a solid understanding of each CRP country’s social, cultural and economic contexts and of the variations across them. This paper provides an initial input into developing this knowledge, based on a review of literature on agriculture, aquaculture and gender relations within the five focal countries. Before delving into the findings of the literature review, the paper first justifies the expectation that successfully achieving lasting wellbeing improvements for poor women and men dependent on AAS rests in part on advances in gender equity, and in light of this justification, presents the AAS CRP’s conceptual framew

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In late 2012, a governance assessment was carried out as part of the diagnosis phase of rollout of the CGIAR Aquatic Agricultural Systems Program in Malaita Hub in Solomon Islands. The purpose of the assessment was to identify and provide a basic understanding of essential aspects of governance related to Aquatic Agricultural Systems in general, and more specifically as a case study in natural resource management. The underlying principles of the approach we have taken are drawn from an approach known as “Collaborating for Resilience” (CORE), which is based on bringing all key stakeholders into a process to ensure that multiple perspectives are represented (a listening phase), that local actors have opportunities to influence each other’s understanding (a dialogue phase), and that ultimately commitments to action are built (a choice phase) that would not be possible through an outsider’s analysis alone. This report begins to address governance from an AAS perspective, using input from AAS households and other networked stakeholders. We attempt to summarize governance issues that are found not only within the community but also, and especially, those that are beyond the local level, both of which may need to be addressed by the AAS program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WorldFish is leading the CGIAR Research Program on Aquatic Agricultural Systems together with two other CGIAR Centers; the International Water Management Institute (IWMI) and Bioversity. In 2012 and 2013 the AAS Program rolled out in Solomon Islands, Zambia, Bangladesh, Cambodia and the Philippines. Aquatic Agricultural Systems are places where farming and fishing in freshwater and/or coastal ecosystems contribute significantly to household income and food security. The program goal is to improve the well-being of AAS-dependent people. A hub is a geographic location that provides a focus for learning, innovation and impact through participatory action research. In Solomon Islands AAS works in Malaita Hub (Malaita Province) and Western Hub (Western Province). In each hub we identify a ‘Development Challenge’ that the Program will address to give us focus and motivation.