7 resultados para Project Management Maturity Model
em Aquatic Commons
Resumo:
Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.
Resumo:
The study was conducted to investigate the communities perception and compliance to community-based fisheries management (CBFM) in Turag-Bangshi floodplains under Kaliakoir, Gazipur District. Measures such as ban on use of the harmful fishing gears, seasonal fishing closure, halt of fry fishing, halt of dewatering of beels and the impact of establishment of sanctuaries on fish production and species diversity were introduced by MACH project. Almost all members of the communities in Turag-Bangshi MACH (Management of Aquatic Ecosystem through Community Husbandry) site welcomed the introduction and complied with the implementation of all management measures which helped stopped use of harmful fishing gears, ensured survival and breeding of brood fish in the rainy season, protected and allowed fry to grow big, restored lost and degraded fisheries and organized communities for sustainable development of the fisheries. A total of 51 species of fishes were found in Makosh beel (natural depression). Among these, small indigenous species (SIS) under Cyprinidae family (Puntius sophore) was the most dominant. Many species available in the past recorded disappeared from the Makosh beel due to loss of habitat and industrial pollution that damaged spawning and nursery grounds of fish. Introduction of some selective native endangered species (Nandus nandus, Notopterus notopterus, Ompok pabda and Labeo calbasu) by MACH in the Turag-Bangshi water bodies increased diversity of species from 82 to 95. Over a period of five years during MACH intervention, the average production remained nearly 200% higher than the baseline production of 57 kg/ha to present 207 kg/ha due to maintaining sanctuaries and the closed fishing seasons. Per capita daily fish consumption of the surrounding communities also increased by 78% (from 27 to 48 g/person/day) which is much higher than the national average fish consumption in Bangladesh. The implementation of community-based MACH project management measures substantially improved fish habitat, production, consumption and socio-economic conditions of the surrounding communities. The model can be used to improve the floodplains of Bangladesh.
Resumo:
Nile perch (Lates niloticus), tilapia (Oreochromis spp), dagaa (Rastrineobola argentea, silver cyprinid), and haplochromines (Tribe Haplochromini) form the backbone of the commercial fishery on Lake Victoria. These fish stocks account for about 70% of the total catch in the three riparian states Uganda, Kenya, and Tanzania. The lake fisheries have been poorly managed, in part due to inadequate scientific analysis and management advice. The overall objective of this project was to model the stocks of the commercial fisheries of Lake Victoria with the view of determining reference points and current stock status. The Schaefer biomass model was fitted to available data for each stock (starting in the 1960s or later) in the form of landings, catch per unit effort, acoustic survey indices, and trawl survey indices. In most cases, the Schaefer model did not fit all data components very well, but attempts were made to find the best model for each stock. When the model was fitted to the Nile perch data starting from 1996, the estimated current biomass is 654 kt (95% CI 466–763); below the optimum of 692 kt and current harvest rate is 38% (33–73%), close to the optimum of 35%. At best, these can be used as tentative guidelines for the management of these fisheries. The results indicate that there have been strong multispecies interactions in the lake ecosystem. The findings from our study can be used as a baseline reference for future studies using more complex models, which could take these multispecies interactions into account.
Resumo:
Literature was reviewed for data describing fecundity, maturity, and growth in the ovoviviparous genus Sebastes (rockfishes). Assembled data were examined for patterns associated with geographic location and fish length. Rockfishes display great range in length at maturity (9-52 cm total length) and estimated fecundity at maturity (1,700-417,000 eggs or embryos). Within species, length at maturity usually increases at higher latitudes and tends to be greater for females than males. Among species, length at maturity of females is positively and significantly correlated with maximum length and with the ratio of fecundity at maturity to fecundity at maximum length. Fecundity of rockfishes is not notably lower than oviparous fishes such as snappers (Lutjanidae) andcods (Gadidae).
Resumo:
The purpose of this project is to model seabird flock size data to provide recommendations to the Bureau of Ocean and Energy Management for offshore wind turbine placement. Our hypothesis is that ecological characteristics influence which statistical distribution will provide the best fit to seabird flock size data. To test this, seabird species can be grouped based on shared ecological traits, such as foraging mechanism or diet.
Resumo:
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.