3 resultados para Problematic internet use
em Aquatic Commons
Resumo:
Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.
Resumo:
Stock assessments can be problematic because of uncertainties associated with the data or because of simplified assumptions made when modeling biological processes (Rosenberg and Restrepo, 1995). For example, the common assumption in stock assessments that stocks are homogeneous and discrete (i.e., there is no migration between the stocks) is not necessarily true (Kell et al., 2004a, 2004b).
Resumo:
Otolith thermal marking is an efficient method for mass marking hatchery-reared salmon and can be used to estimate the proportion of hatchery fish captured in a mixed-stock fishery. Accuracy of the thermal pattern classification depends on the prominence of the pattern, the methods used to prepare and view the patterns, and the training and experience of the personnel who determine the presence or absence of a particular pattern. Estimating accuracy rates is problematic when no secondary marking is available and no error-free standards exist. Agreement measures, such as kappa (κ), provide a relative measure of the reliability of the determinations when independent readings by two readers are available, but the magnitude of κ can be influenced by the proportion of marked fish. If a third reader is used or if two or more groups of paired readings are examined, latent class models can provide estimates of the error rates of each reader. Applications of κ and latent class models are illustrated by a program providing contribution estimates of hatchery-reared chum and sockeye salmon in Southeast Alaska.