4 resultados para Probability models
em Aquatic Commons
Resumo:
Restoration of water-bodies from eutrophication has proved to be extremely difficult. Mathematical models have been used extensively to provide guidance for management decisions. The aim of this paper is to elucidate important problems of using models for predicting environmental changes. First, the necessity for a proper uncertainty assessment of the model, upon calibration, has not been widely recognized. Predictions must not be a single time trajectory; they should be a band, expressing system uncertainty and natural variability. Availability of this information may alter the decision to be taken. Second, even with well-calibrated models, there is no guarantee they will give correct projections in situations where the model is used to predict the effects of measures designed to bring the system into an entirely different ”operating point”, as is typically the case in eutrophication abatement. The concept of educated speculation is introduced to partially overcome this difficulty. Lake Veluwe is used as a case to illustrate the point. Third, as questions become more detailed, such as ”what about expected algal composition”, there is a greater probability of running into fundamental problems that are associated with predicting the behaviour of complex non-linear systems. Some of these systems show extreme initial condition sensitivity and even, perhaps, chaotic behaviour, and are therefore fundamentally unpredictable.
Resumo:
When estimating parameters that constitute a discrete probability distribution {pj}, it is difficult to determine how constraints should be made to guarantee that the estimated parameters { pˆj} constitute a probability distribution (i.e., pˆj>0, Σ pˆj =1). For age distributions estimated from mixtures of length-at-age distributions, the EM (expectationmaximization) algorithm (Hasselblad, 1966; Hoenig and Heisey, 1987; Kimura and Chikuni, 1987), restricted least squares (Clark, 1981), and weak quasisolutions (Troynikov, 2004) have all been used. Each of these methods appears to guarantee that the estimated distribution will be a true probability distribution with all categories greater than or equal to zero and with individual probabilities that sum to one. In addition, all these methods appear to provide a theoretical basis for solutions that will be either maximum-likelihood estimates or at least convergent to a probability distribut
Resumo:
Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.
Resumo:
The recently revised Magnuson–Stevens Fishery Conservation and Management Act requires that U.S. fishery management councils avoid overfishing by setting annual catch limits (ACLs) not exceeding recommendations of the councils’ scientific advisers. To meet that requirement, the scientific advisers will need to know the overfishing limit (OFL) estimated in each stock assessment, with OFL being the catch available from applying the limit fishing mortality rate to current or projected stock biomass. The advisers then will derive ‘‘acceptable biological catch’’ (ABC) from OFL by reducing OFL to allow for scientific uncertainty, and ABC becomes their recommendation to the council. We suggest methodology based on simple probability theory by which scientific advisers can compute ABC from OFL and the statistical distribution of OFL as estimated by a stock assessment. Our method includes approximations to the distribution of OFL if it is not known from the assessment; however, we find it preferable to have the assessment model estimate the distribution of OFL directly. Probability-based methods such as this one provide well-defined approaches to setting ABC and may be helpful to scientific advisers as they translate the new legal requirement into concrete advice.