75 resultados para Prey density
em Aquatic Commons
Resumo:
The effects of seasonal and regional differences in diet composition on the food requirements of Steller sea lions (Eumetopias jubatus) were estimated by using a bioenergetic model. The model considered differences in the energy density of the prey, and differences in digestive efficiency and the heat increment of feeding of different diets. The model predicted that Steller sea lions in southeast Alaska required 45–60% more food per day in early spring (March) than after the breeding season in late summer (August) because of seasonal changes in the energy density of the diets (along with seasonal changes in energy requirements). The southeast Alaska population, at 23,000 (±1660 SD) animals (all ages), consumed an estimated 140,000 (±27,800) t of prey in 1998. In contrast, we estimated that the 51,000 (±3680) animals making up the western Alaska population in the Gulf of Alaska and Aleutian Islands consumed just over twice this amount (303,000 [±57,500] t). In terms of biomass removed in 1998 from Alaskan waters, we estimated that Steller sea lions accounted for about 5% of the natural mortality of gadids (pollock and cod) and up to 75% of the natural mortality of hexagrammids (adult Atka mackerel). These two groups of species were consumed in higher amounts than any other. The predicted average daily food requirement per individual ranged from 16 (±2.8) to 20 (±3.6) kg (all ages combined). Per capita food requirements differed by as much as 24% between regions of Alaska depending on the relative amounts of low–energy-density prey (e.g. gadids) versus high–energy-density prey (e.g. forage fish and salmon) consumed. Estimated requirements were highest in regions where Steller sea lions consumed higher proportions of low–energy-density prey and experienced the highest rates of population decline
Resumo:
The California sea otter population is gradually expanding in size and geographic range and is consequently invading new feeding grounds, including bays and estuaries that are home to extensive populations of bivalve prey. One such area is the Elkhorn Slough, where otters have apparently established a spring and summer communal feeding and resting area. In anticipation of future otter foraging in the slough, an extensive baseline database on bivalve densities, size distributions, biomasses, and burrow depths has been established for three potential bivalve prey species, Saxidomus nuttalli, Tresus nutallii, and Zirphaea pilsbryi. In 1986, the Elkhorn Slough otters were foraging predominately at two areas immediately east and west of the Highway 1 bridge (Skipper's and the PG&E Outfall). Extensive subtidal populations of Saxidomus nuttalli and Tresus nuttallii occur in these areas. Shell records collected at these study areas indicated that sea otters were foraging selectively on Saxidomus over Tresus. The reason for this apparent preference was not clear. At the Skipper's study site, 51% of the shell record was composed of Saxidomus, yet this species accounted for only 16% of the in situ biomass, and only 39% of the available clams. Tresus represented 49% of the shell record at Skipper's, yet this species accounted for 84% of the in situ biomass and 61% of the available clams. There was no difference in mean burrow depth between the two species at this site so availability does not explain the disparity in consumption. At the PG&E Outfall, Saxidomus represents 66% of the in situ biomass and 81% of the available clams, while Tresus accounts for 34% of the in situ biomass and 19% of the available clams. Saxidomus accounts for 96% of the shell record at this site vs. 4% for Tresus, again indicating that the otters were preying on Saxidomus out of proportion to their density or biomass. High densities and biomasses of a third species, Zirphaea pilsbryi, occur in areas where sea otters were observed to be foraging, yet no cast-off Zirphaea shells were found. Although it is possible this species was not represented in the shell record because the otters were simply chewing up the shells, it is more likely this species is avoided by sea otters. There were relatively few sea otters in the Elkhorn Slough in 1986 compared to the previous two years. This, coupled with high bivalve densities, precluded any quantitative comparison of bivalve densities before and after the 1986 sea otter occupation. Qualitative observations made during the course of this study, and quantitative observations from previous studies indicate that, after 3 years, sea otters are not yet significantly affecting bivalve densities in the Elkhorn Slough.
Distribution and Density of Vegetative Hydrilla Propagules in the Sediments of Two New Zealand Lakes
Resumo:
The distribution and density of hydrilla (Hydrilla verticillata (L.f.)Royle) turions and tubers in two New Zealand lakes were assessed by sampling cores of sediment from Lakes Tutira and Waikapiro each year from 1994 to 1997. Turion and tuber density differed with water depth, with maximum numbers of tubers and turions found in the 1-2 m and 1.5-4m water depth ranges respectively. A high turion to tuber ratio was observed, with turions accounting for over 80% of propagules. The relatively low numbers of turions and tubers compared with other reports, and the distribution of most tubers within the shallow water is likely to be associated with black swan grazing (Cygnus atratus Latham), with maintains a canopy of hydrilla consistently 1 m below the water surface.
Resumo:
Research cruises were conducted in August-October 2007 to complete the third annual remotely operated vehicle (ROV)-based assessments of nearshore rocky bottom finfish at ten sites in the northern Channel Islands. Annual surveys at the Channel Islands have been conducted since 2004 at four sites and were expanded to ten sites in 2005 to monitor potential marine protected area (MPA)effects on baseline fish density. Six of the ten sites are in MPAs and four in nearby fished reference areas. In 2007 the amount of soft-only substrate on the 141 track lines surveyed was again estimated in real-time in order to target rocky bottom habitat. These real-time estimates of hard and mixed substrate for all ten sites averaged 57%, 1% more than the post-processed average of 56%. Surveys generated 69.9 km of usable video for use in finfish density calculations, with target rocky bottom habitat accounting for 56% (39.1 km) for all sites combined. The amount of rocky habitat sampled by site averaged 3.8 km and ranged from 3.3 km sampled at South Point, a State Marine Reserve (SMR) off Santa Rosa Island, to 4.7 km at Anacapa Island SMR. A sampling goal of 75 transects at all 10 sites was met using real-time habitat estimates combined with precautionary over-sampling by 10%. A total of seventy kilometers of sampling is projected to produce at least seventy-five 100 m2 transects per site. Thirteen of 26 finfish taxa observed were selected for quantitative evaluation over the time series based on a minimum criterion of abundance (0.05/100 m2). Ten of these 13 finfish appear to be more abundant at the state marine reserves relative to fished areas when densities were averaged across the 2005 to 2007 period. One of the species that appears to be more abundant in fished areas was señorita, a relatively small prey species that is not a commercial or recreational target. (PDF contains 83 pages.)
Resumo:
The migratory population of striped bass (Morone saxatilis) (>400 mm total length[TL]) spends winter in the Atlantic Ocean off the Virginia and North Carolina coasts of the United States. Information on trophic dynamics for these large adults during winter is limited. Feeding habits and prey were described from stomach contents of 1154 striped bass ranging from 373 to 1250 mm TL, collected from trawls during winters of 1994-96, 2000, and 2002-03, and from the recreational fishery during 2005-07. Nineteen prey species were present in the diet. Overall, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli) dominated the diet by boimass (67.9%) and numerically (68.6%). The percent biomass of Atlantic menhaden during 1994-2003 to 87.0% during 2005-07. Demersal fish species such as Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) represented <15% of the diet biomass, whereas alosines (Alosa spp.) were rarely observed. Invertebrates were least important, contributing <1.0% by biomass and numerically. Striped bass are capable of feeding on a wide range of prey sizes (2% to 43% of their total length). This study outlines the importance of clupeoid fishes to striped bass winter production and also shows that predation may be exerting pressure on one of their dominant prey, the Atlantic menhaden.
Resumo:
To be in compliance with the Endangered Species Act and the Marine Mammal Protection Act, the United States Department of the Navy is required to assess the potential environmental impacts of conducting at-sea training operations on sea turtles and marine mammals. Limited recent and area-specific density data of sea turtles and dolphins exist for many of the Navy’s operations areas (OPAREAs), including the Marine Corps Air Station (MCAS) Cherry Point OPAREA, which encompasses portions of Core and Pamlico Sounds, North Carolina. Aerial surveys were conducted to document the seasonal distribution and estimated density of sea turtles and dolphins within Core Sound and portions of Pamlico Sound, and coastal waters extending one mile offshore. Sea Surface Temperature (SST) data for each survey were extracted from 1.4 km/pixel resolution Advanced Very High Resolution Radiometer remote images. A total of 92 turtles and 1,625 dolphins were sighted during 41 aerial surveys, conducted from July 2004 to April 2006. In the spring (March – May; 7.9°C to 21.7°C mean SST), the majority of turtles sighted were along the coast, mainly from the northern Core Banks northward to Cape Hatteras. By the summer (June – Aug.; 25.2°C to 30.8°C mean SST), turtles were fairly evenly dispersed along the entire survey range of the coast and Pamlico Sound, with only a few sightings in Core Sound. In the autumn (Sept. – Nov.; 9.6°C to 29.6°C mean SST), the majority of turtles sighted were along the coast and in eastern Pamlico Sound; however, fewer turtles were observed along the coast than in the summer. No turtles were seen during the winter surveys (Dec. – Feb.; 7.6°C to 11.2°C mean SST). The estimated mean surface density of turtles was highest along the coast in the summer of 2005 (0.615 turtles/km², SE = 0.220). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2005 (0.016 turtles/km², SE = 0.009). The mean seasonal abundance estimates were always highest in the coastal region, except in the winter when turtles were not sighted in either region. For Pamlico Sound, surface densities were always greater in the eastern than western section. The range of mean temperatures at which turtles were sighted was 9.68°C to 30.82°C. The majority of turtles sighted were within water ≥ 11°C. Dolphins were observed within estuarine waters and along the coast year-round; however, there were some general seasonal movements. In particular, during the summer sightings decreased along the coast and dolphins were distributed throughout Core and Pamlico Sounds, while in the winter the majority of dolphins were located along the coast and in southeastern Pamlico Sound. Although relative numbers changed seasonally between these areas, the estimated mean surface density of dolphins was highest along the coast in the spring of 2006 (9.564 dolphins/km², SE = 5.571). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2004 (0.192 dolphins/km², SE = 0.066). The estimated mean surface density of dolphins was lowest along the coast in the summer of 2004 (0.461 dolphins/km², SE = 0.294). The estimated mean surface density of dolphins was lowest in Core and Pamlico Sounds in the summer of 2005 (0.024 dolphins/km², SE = 0.011). In Pamlico Sound, estimated surface densities were greater in the eastern section except in the autumn. Dolphins were sighted throughout the entire range of mean SST (7.60°C to 30.82°C), with a tendency towards fewer dolphins sighted as water temperatures increased. Based on the findings of this study, sea turtles are most likely to be encountered within the OPAREAs when SST is ≥ 11°C. Since sea turtle distributions are generally limited by water temperature, knowing the SST of a given area is a useful predictor of sea turtle presence. Since dolphins were observed within estuarine waters year-round and throughout the entire range of mean SST’s, they likely could be encountered in the OPAREAs any time of the year. Although our findings indicated the greatest number of dolphins to be present in the winter and the least in the summer, their movements also may be related to other factors such as the availability of prey. (PDF contains 28 pages)
Resumo:
Ontogenetic patterns in the percent dry weight (%DW) and energy density (joules per gram of wet weight) were studied in the early life stages of the subtropical estuarine and marine gray snapper Lutjanus griseus and the warmtemperate estuarine and marine spotted seatrout Cynoscion nebulosus. The %DW was variable for individuals of both species but increased significantly through larval to juvenile stages (<20% for fish ,50 mm standard length to 20–30% for fish >50 mm). The lipid percentage, which was determined only for gray snapper, was also variable between individuals but showed significant increase with body size. Strong relationships between percent dry weight and energy density were evident for both species; however, the slopes of regressions were significantly lower than in general multispecies models, demonstrating the need for species- and stagespecific energy density data in bioenergetics models.
Resumo:
ENGLISH: This study shows how the catch and effort statistics, from 1951 to 1956, of the fishery for yellowfin tuna, Neothunnus macropterus, in the Eastern Tropical Pacific Ocean, have been used to compute: (i) two indices of average population density; (ii) an index of concentration of effort on areas of greatest density of available yellowfin. These three indices were then used to determine: (i) quarterly and annual variation in each of them; (ii) the relationship between the two indices of density; (iii) the relationship of each of the indices to the number of exploited one-degree rectangles. To remove extreme sampling variation at low levels of effort, the data from all one-degree rectangles subjected to less than five logged days' fishing in a quarter were eliminated, and the computations were repeated for comparison with those of the original data. SPANISH: Este estudio da a conocer cómo las estadísticas sobre la pesca y el esfuerzo de pesca de la pesquería del atún aleta amarilla, Neothunnus macropterus, en el Océano Pacífico Oriental Tropical, durante 1951 a 1956, han servido para computar: (i) dos índices del promedio de la densidad de la población; (ií) un índice de la concentración del esfuerzo en las áreas de mayor densidad de atún aleta amarilla disponible. Estos tres índices han sido luego usados para determinar: (i) la variación trimestral y anual en cada uno de ellos; (ií) la relación entre los dos índices de densidad; (iii) la relación de cada uno de los índices con el número de rectángulos de un grado explotados. Para evitar la extrema variación del muestreo a bajos niveles de esfuerzo, se eliminaron los datos de todos los rectángulos de un grado sujetos a menos de cinco días de actividad pesquera durante un trimestre según los registros de los cuadernos de bitácora, y las computaciones se repitieron para compararlas con las de los datos originales.
Resumo:
There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations.
Resumo:
Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.
Resumo:
ENGLISH: In a previous Bulletin of this Commission, Griffiths (1960) discussed two indices of population density and an index of concentration of fishing effort of bait boats for yellowfin tuna in the Eastern Tropical Pacific for the 1951-1956 period. Yellowfin and skipjack tuna occur in the same general fishing areas and many of the commercial catches are composed of a mixture of the two species. It is desirable, therefore, to extend the investigation to skipjack and to the two species combined. SPANISH:En un Boletín anterior de esta Comisión, Griffiths (1960) se refiere a dos índices de la densidad de la población y a un índice de la concentración del esfuerzo de pesca de los barcos de carnada sobre el atún aleta amarilla en el Pacífico Oriental Tropical, correspondientes al período 1951-1956. Los atunes aleta amarilla y barrilete se encuentran en las mismas áreas generales de pesca y muchas de las pescas comerciales están compuestas de una mezcla de las dos especies. Es deseable, por lo tanto, ampliar la investigación en lo que se refiere al barrilete y a las dos especies combinadas.
Resumo:
Diets of 76 species of fish larvae from most oceans of the world were inventoried on the basis of information in 40 published studies. Although certaln geographlc, size- and taxon-specific patterns were apparent, certain zooplankton taxa appeared in the diets of larvae of a variety of fish species in numerous localities. Included were six genera of calanoid copepods (Acartia, Calanus, Centropages, Paracalanus, Pseudocaianus, Temora), three genera of cyclopoid copepods (Corycaeus, Oilhona, Oncata), harpacticoid copepods, copepod nauplii, tintinoids, cladocerans of the genera Evadne and Podon, barnacle nauplii, gastropod larvae, pteropods of the genus Limacina, and appendicularians. Literature on feeding habits of these zooplankters reveals that most of the copepods are omnivorous, feeding upon both phytoplankton and other zooplankton. Some taxa, such as Calanus, Paracalanus, Pseudocalanus, and copepod nauplii appear to be primarily herbivorous, while others, such as Acartia, Centropages, Temora, and cyclopoids exhibit broad omnivory or carnivory. The noncopepod zooplankters are primarily filter-feeders upon pbytoplankton and/or bacterioplankton. Despite the importance of zooplankters in larval fish food webs, spectic knowledge of the feeding ecology of many taxa is poor. Further, much present knowledge comes only from laboratory investigations that may not accurately portray feeding habits of zooplankters in nature. Lack of knowledge of the feeding ecology of many abundant zooplankters, which are also important in larval fish food webs, precludes realistic understanding of pelagic ecosystem dynamics. (PDF file contains 34 pages.)
Resumo:
Experimental stocking density of Macrobrachium rosenbergii in larval rearing was conducted in A.G. Aqua Hatchery, Chakaria, Bangladesh to study the effect of different stocking densities on growth, survival rate and diseases stress under hatchery condition. The research work was conducted using six cemented rectangular tanks having 3m3 capacity (1.5mX2mX1m) each. Stocking density were maintained in three experimental setup as 200, 150 and 100ind/L of the T1, T2 and T3 respectively with one replicate each. The larvae were fed with Artemia nauplii, Custard, Maxima and brine shrimp flakes. Water quality was maintained by exchanging 20-30% (12ppt saline water) daily. During the study period, temperature, pH, DO, salinity, nitrite-nitrogen, ammonia and alkalinity were maintained from 28.5-31.5ºC, 7.5-7.8, 5.8-5.9mg/L, 12-13ppt, 0.14-0.2 mg/L, 0.22-0.3mg/L, and 140-160mg/L respectively. The growth rates of larvae at 11th stage were recorded in terms of body length 0.115, 0.136, and 0.169 mm/day whereas body weight were observed 0.000115, 0.000180, and 0.000240g/day. The survival rate of larvae were found 21.8%, 30.4% and 51.3% in treatments T1, T2 and T3 respectively. PL was obtained as 43, 45, and 51PL/L and days required of 41, 38 and 34 days in stocking density of 200, 150, and 100ind/L respectively. It was found that the minimum of 34 days was required to attain the PL (12th stage) using the stocking density of 100 individuals/L. Cannibalism, Zoothamnium, Exuvia Entrapment Disease (EED), and Bacterial Necrosis (BN) were found to be the threat to the commercial hatchery operation that might responsible for potential larval damages which can be reduced by lowering the stocking densities in larval rearing tank that also increased the survival and growth rate.
Diet and condition of American Alligators (Alligator mississippiensis)in three central Florida lakes
Resumo:
Understanding the diet of crocodilians is important because diet affects condition, behavior, growth, and reproduction. By examining the diet of crocodilians, valuable knowledge is gained about predator-prey interactions and prey utilization among habitats. In this study, I examined the diet and condition of adult American alligators (Alligator mississippiensis) in three central Florida lakes, Griffin, Apopka, and Woodruff. Two hundred adult alligators were captured and lavaged from March through October 2001, from April through October 2002, and from April through August 2003. Alligators ate a variety of vertebrate and invertebrate prey, but vertebrates were more abundant and fish dominated alligator diets in the lakes. Species composition of fish varied among the lakes. The majority of the diet of alligators from Lakes Apopka and Woodruff was fish, 90% and 84% respectively. Lake Apopka alligators consumed a significantly (P = 0.006) higher proportion of fish in their diet. Fish were 54% of the diet of Lake Griffin alligators and the infrequent occurrence of reptiles, mammals, birds, and amphibians often resulted in a large biomass. Differences in alligator diets among lakes may be due to differences in sample size (higher numbers of samples from Lake Griffin), prey availability, habitat, prey vulnerability, or prey size. Alligator condition (Fulton’s Condition Factor, K) was significantly (P < 0.001) different among the lakes. Alligators from Lake Apopka had the highest condition, followed by those from Lake Griffin, and alligators from Lake Woodruff had the lowest condition. Composition of fish along with diversity and equitability of fish in alligator diets may have contributed to differences in condition among lakes. Condition was probably also due to factors other than diet such as alligator hunting behavior, alligator density, or year-round optimal temperature that prolongs feeding. The observed diet and condition differences probably reflect both habitat differences and prey availability in these three lakes.
Resumo:
Many highly exploited ecosystems are managed on the basis of single-species demographic information. This management approach can exacerbate tensions among stakeholders with competing interests who in turn rely on data with notoriously high variance. In this case study, an application of diet and dive survey data was used to describe the prey preference of lingcod (Ophiodon elongatus) in a predictive framework on nearshore reefs off Oregon. The lingcod is a large, fast-growing generalist predator of invertebrates and fishes. In response to concerns that lingcod may significantly reduce diminished populations of rockfishes (Sebastes spp.), the diets of 375 lingcod on nearshore reefs along the Oregon Coast were compared with estimates of relative prey availability from dive surveys. In contrast to the transient pelagic fishes that comprised 46% of lingcod diet by number, rockfishes comprised at most 4.7% of prey items. Rockfishes were the most abundant potential prey observed in dive surveys, yet they were the least preferred. Ecosystem-based fisheries management (EBFM) requires information about primary trophic relationships, as well as relative abundance and distribution data for multiple species. This study shows that, at a minimum, predation relative to prey availability must be considered before predator effects can be understood in a management context.