2 resultados para Predictor model
em Aquatic Commons
Resumo:
Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We describe an empirical-statistical model of climates of the southwestern United States. Boundary conditions include sea surface temperatures, atmospheric transmissivity, and topography. Independent variables are derived from the boundary conditions along 1000-km paths of atmospheric circulation. ... Predictor equations are derived over a larger region than the application area to allow for the increased range of paleoclimate. This larger region is delimited by the autocorrelation properties of climatic data.