9 resultados para Precision and recall

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the VITAL cruise in the Bay of Biscay in summer 2002, two devices for measuring the length of swimming fish were tested: 1) a mechanical crown that emitted a pair of parallel laser beams and that was mounted on the main camera and 2) an underwater auto-focus video camera. The precision and accuracy of these devices were compared and the various sources of measurement errors were estimated by repeatedly measuring fixed and mobile objects and live fish. It was found that fish mobility is the main source of error for these devices because they require that the objects to be measured are perpendicular to the field of vision. The best performance was obtained with the laser method where a video-replay of laser spots (projected on fish bodies) carrying real-time size information was used. The auto-focus system performed poorly because of a delay in obtaining focus and because of some technical problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We compare results of bottom trawl surveys off Washington, Oregon, and California in 1977, 1980, 1983, and 1986 to discern trends in population abundance, distribution, and biology. Catch per unit of effort, area-swept biomass estimates, and age and length compositions for 12 commercially important west coast groundfishes are presented to illustrate trends over the lO-year period. We discuss the precision, accuracy, and statistical significance of observed trends in abundance estimates. The influence of water temperature on the distribution of groundfishes is also briefly examined. Abundance estimates of canary rockfish, Sebastes pinniger, and yellowtail rockfish, S. Jlavidus, declined during the study period; greater declines were observed in Pacific ocean perch, S. alutus, lingcod, Ophiodon elongatus, and arrowtooth flounder, Atheresthes stomias. Biomass estimates of Pacific hake, Merluccius productus, and English, rex, and Dover soles (Pleuronectes vetulus, Errex zachirus, and Microstomus pacificus) increased, while bocaccio, S. paucispinis, and chilipepper, S. goodei, were stable. Sablefish, Anoplopoma fimbria, biomass estimates increased markedly from 1977 to 1980 and declined moderately thereafter. Precision was lowest for rockfishes, lingcod, and sablefish; it was highest for flatfishes because they were uniformly distributed. The accuracy of survey estimates could be gauged only for yellowtail and canary rockfish and sablefish. All fishery-based analyses produced much larger estimates of abundance than bottom trawl surveys-indicative of the true catchability of survey trawls. Population trends from all analyses compared well except in canary rockfish, the species that presents the greatest challenge to obtaining reasonable precision and one that casts doubts on the usefulness of bottom trawl surveys for estimating its abundance. (PDF file contains 78 pages.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The northwest Atlantic population of smooth dogfish (Mustelus canis) ranges from Cape Cod, Massachusetts, to South Carolina. Although M. canis is seasonally abundant in this region, very little is known about important aspects of its biology, such as growth and reproductive rates. In the early 1990s, commercial fishery landings of smooth dogfish dramatically increased on the east coast of the United States. This study investigated growth rates of the east coast M. canis population through analysis of growth patterns in vertebral centra. Marginal increment analysis, estimates of precision, and patterns in seasonal growth supported the use of vertebrae to age these sharks. Growth bands in vertebral samples were used to estimate ages for 894 smooth dogfish. Age-length data were used to determine von Bertalanffy growth parameters for this population: K = 0.292/yr, L∞ = 123.57 cm, and t0 = –1.94 years for females, and K = 0.440/yr, L∞ = 105.17 cm, and t0 = –1.52 years for males. Males matured at two or three years of age and females matured between four and seven years of age. The oldest age estimate for male and female samples was ten and sixteen years, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Population assessments seldom incorporate habitat information or use previously observed distributions of fish density. Because habitat affects the spatial distribution of fish density and overall abundance, the use of habitat information and previous estimates of fish density can produce more precise and less biased population estimates. In this study, we describe how poststratification can be applied as an unbiased estimator to data sets that were collected under a probability sampling design, typical of many multispecies trawl surveys. With data from a multispecies survey of juvenile flatfish, we show how poststratification can be applied to a data set that was not collected under a probability sampling design, where both the precision and the bias are unknown. For each of four species, three estimates of total abundance were compared: 1) unstratified; 2) poststratified by habitat; and 3) poststratified by habitat and fish density (high fish density and low fish density) in nearby years. Poststratification by habitat gave more precise and (or) less design-biased estimates than an unstratified estimator for all species in all years. Poststratification by habitat and fish density produced the most precise and representative estimates when the sample size in the high fish-density and low fish-density strata were sufficient (in this study, n≥20 in the high fish-density stratum, n≥9 in the low fish-density stratum). Because of the complexities of statistically testing the annual stratified data, we compared three indices of abundance for determining statistically significant changes in annual abundance. Each of the indices closely approximated the annual differences of the poststratified estimates. Selection of the most appropriate index was dependent upon the species’ density distribution within habitat and the sample size in the different habitat areas. The methods used in this study are particularly useful for estimating individual species abundance from multispecies surveys and for retrospective st

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plankton and larval fish sampling programs often are limited by a balance between sampling frequency (for precision) and costs. Advancements in sampling techniques hold the potential to add considerable efficiency and, therefore, add sampling frequency to improve precision. We compare a newly developed plankton imaging system, In Situ Ichthyoplankton Imaging System (ISIIS), with a bongo sampler, which is a traditional plankton sampling gear developed in the 1960s. Comparative sampling was conducted along 2 transects ~30–40 km long. Over 2 days, we completed 36 ISIIS tow-yo undulations and 11 bongo oblique tows, each from the surface to within 10 m of the seafloor. Overall, the 2 gears detected comparable numbers of larval fishes, representing similar taxonomic compositions, although larvae captured with the bongo were capable of being identified to lower taxonomic levels, especially larvae in the small (<5 mm), preflexion stages. Size distributions of the sampled larval fishes differed considerably between these 2 sampling methods, with the size range and mean size of larval fishes larger with ISIIS than with the bongo sampler. The high frequency and fine spatial scale of ISIIS allow it to add considerable sampling precision (i.e., more vertical sections) to plankton surveys. Improvements in the ISIIS technology (including greater depth of field and image resolution) should also increase taxonomic resolution and decrease processing time. When coupled with appropriate net sampling (for the purpose of collecting and verifying the identification of biological samples), the use of ISIIS could improve overall survey design and simultaneously provide detailed, process-oriented information for fisheries scientists and oceanographers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fishing of kapenta (Limnothrissa miodon, Boulenger 1906) on the Cahora Bassa Dam started around 1992, when considerable stocks of this species were discovered in the lake. The species is believed to have successful established in the Dam following a natural introduction through a downstream movement from Kariba dam where it was introduced in 1967/68. Fisheries statistics on the kapenta fishery have been collected since 1993 by the Ministry of Fisheries through the Provincial Offices for Fisheries Administration of Tete (SPAP - Tete) but only data from 1995 onward are available on the database of the Ministry of Fisheries and these are the data that was used for compiling the present report on which trends of fishing effort, catch and CPUE are analyzed. Catch and effort have increased with time, from a minimum of the 4 thousand metric tons for an annual fishing effort of 36 fishing rigs in 1995 to a maximum of 12 tons for a fishing effort of 135 rigs while CPUE followed a decreasing trend during the same period. Correlation analysis between catch and effort suggests that probably environmental factors may have influence on catch variation than the increase on fishing effort. Two models were applied for calculating MSY and FMSY resulting in two pairs of roof leading to two scenario of fisheries management. 10137 tons and a FMSY of 177 fishing rigs were computed using Schaefer model while 11690 tons and a FMSY of 278 were obtained using Fox model. Considering the differences between the two results and considering the fact that the two models have no differences in terms of precision and the fact that their determination coefficient are not different it is suggested, using the precautionary principle that result from Schaefer model be a adopted for fisheries management purpose.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For most fisheries applications, the shape of a length-frequency distribution is much more important than its mean length or variance. This makes it difficult to evaluate at which point a sample size is adequate. By estimating the coefficient of variation of the counts in each length class and taking a weighted mean of these, a measure of precision was obtained that takes the precision in all length classes into account. The precision estimates were closely associated with the ratio of the sample size to the number of size classes in each sample. As a rule-of-thumb, a minimum sample size of 10 times the number of length classes in the sample is suggested because the precision deteriorates rapidly for smaller sample sizes. In absence of such a rule-of-thumb, samplers have previously under-estimated the required sample size for samples with large fish, while over-sampling small fish of the same species.