3 resultados para Power Distribution Planning

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diurnal variation in trawl catches and its influence on energy efficiency of trawler operations are discussed in this paper, based on data on landings of a Japanese factory trawler which operated in the Indian waters during 1992-93. The factory vessel equipped for stern trawling had a length overall of 110 m, GT of 5460 and installed engine power of 5700 hp. Operations were conducted off west coast of India between 31 and 278 m depth contours, using a 80.4 m high opening bottom trawl with an adjusted vertical opening of 7.60.9 m. The catch data was grouped according to the median towing hour, by the time of the day. CPUE obtained was 3713.4 kg.h-1 for day time operations and 1536.6 kg.h-1 for night-time operations. Mean daily catches were 31367 kg.day-1 (SE: 2743) for day time operations and 9430 kg.day-1 (SE: 966) for night-time operations. Fuel consumption were 0.399 and 0.982 kg fuel.kg fish-1, respectively for day and night-time operations. Total catch and catch components such as threadfin bream, bulls eye, hairtails, trevelly, lizard fish showed significant improvement during day-time operations while swarming crabs showed a significant improvement in the night-time operations. The difference in catch rates between day and night could be attributed to diurnal variation in the spatial distribution and schooling behaviour of the catch categories, their differential behaviour in the vicinity of trawl systems under varying light levels of day and night and consequent effect on catching efficiency and size selectivity at different stages in the capture process. The results obtained in addition to its importance in the operational planning of trawling in order to realise objectives of maximising catch per unit effort and minimising fuel consumption per unit volume of fish caught, has added significance in the use of bottom trawl surveys in stock abundance estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical distribution of intertidal molluscs in and around Mumbai had been studied. Each species has an upper and lower limit of distribution along the vertical intertidal gradient and are concentrated at particular levels or zones where they find optimum living conditions. Zonation of the intertidal area with reference to molluscs at rocky shores of TIFR, Bandstand and NCPA has similarities. However, there is no similarity in zonation among rocky, sandy and muddy shores. Rocky intertidal zones are more diverse and dense in terms of molluscs. The mid and lower littoral zones have rich diversity. The upper littoral zone at some sites, especially Girgaon chowpatty is totally devoid of molluscs due to anthropogenic activities. Gafrarium divaricatum, Nerita oryzarum, N. polita and Neritina crepidularia have established themselves in all three marked zones, indicating their power to adjust with the wide fluctuations in surrounding environmental conditions.