9 resultados para Polymer sponges

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(PDF has 2 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covers the history of the study of boring sponges, taxonomy and distributions. Also includes identification of species, descriptions, key, references and plates. (PDF contains 30 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2001, a research submersible was used to survey seafloor habitat and associated benthos in the northeastern Gulf of Alaska. One inspected site had a uniform sand-silt substrate, punctuated by widely spaced (10–20 m apart) boulders. Two-thirds of the boulders had sponge, Aphrocallistes sp., colonies. Eighty-two juvenile (5–10 cm) red rockfish (Sebastes sp.) were also observed during the dive, and all of these fish were closely associated with the sponges. No juvenile red rockfish were seen in proximity to boulders without sponges, nor were any observed on the sand-silt substrate between boulders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three experimental trawl paths subjected to a single pass with the trawl in 1996 in about 200 m of water on the eastern Gulf of Alaska continental shelf were revisited in July 1997, 1 year post-trawl. Many large, erect sponges, the taxa impacted most significantly, had been removed or damaged by the trawl. Sponges in the cold, deep water of the Gulf of Alaska were slow to recover from trawling effects. These findings contrast with recovery times for shallow, warmwater sponges and may have fishery management implications for cold-water regions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress response, at the molecular level, of the soft corals Dendronephthya klunzingeri and Heteroxenia sp., hard corals Acropora hyacinthus and A. valenciennesi, an ascidian Symplegma sp. and sponges Latruncula cortica and Callyspongia crassa to germanium oxide (GeO sub(2)) was evaluated. Evaluation was carried out using bioindicators. such as the level of expression of each of the heat shock proteins (HSPs) and the silicatein enzyme in response to the compound. However, the expression was measured by SDS Polyacrylamide Gel Electrophoresis (SDS PAGE) and western blotting. The harmful concentration of GeO sub(2) that produced noticeable molecular changes in the studied samples during the first 6-24 hours was 6 μg/ml. The two studied soft corals as well as the ascidian responded to the harmful concentration of germanium oxide by expressing the heat-shock protein 90 (hsp90), while the two hard corals responded by expressing hsp70, C. crassa by decreasing the level of silicatein enzyme and sponge L. cortica produced no change by any of the used biomarkers, The soft coral Heteroxenia sp. was found to be sensitive to mechanical stress during the experiment and it was more sensitive to 6 μg/ml of GeO sub(2) than the other soft coral D. klunzingeri. The two studied hard corals were sensitive to mechanical stress during the experiment, but A. hyacinth us showed higher sensitivity than A. valenciennesi. However, these 2 corals displayed reverse response to GeO sub(2). Primitive evidences were found in the SDS PAGE to distinguish the tissue of the soft coral from that of the hard coral on the molecular level; the soft coral showed two prominent protein bands (45 and 50 kDa) while the two prominent protein bands for hard corals were 31 and 116 kDa.