4 resultados para Polybrominated diphenyl ethers
em Aquatic Commons
Resumo:
NOAA’s Mussel Watch Program was designed to monitor the status and trends of chemical contamination of U.S. coastal waters, including the Great Lakes. The Program began in 1986 and is one of the longest running, continuous coastal monitoring programs that is national in scope. NOAA established Mussel Watch in response to a legislative mandate under Section 202 of Title II of the Marine Protection, Research and Sanctuaries Act (MPRSA) (33 USC 1442). In addition to monitoring contaminants throughout the Nation’s coastal shores, Mussel Watch stores samples in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. In recent years, flame retardant chemicals, known as polybrominated diphenyl ethers (PBDEs), have generated international concern over their widespread distribution in the environment, their potential to bioaccumulate in humans and wildlife, and concern for suspected adverse human health effects. The Mussel Watch Program, with additional funding provided by NOAA’s Oceans and Human Health Initiative, conducted a study of PBDEs in bivalve tissues and sediments. This report, which represents the first national assessment of PBDEs in the U.S. coastal zone, shows that they are widely distributed. PBDE concentrations in both sediment and bivalve tissue correlate with human population density along the U.S. coastline. The national and watershed perspectives given in this report are intended to support research, local monitoring, resource management, and policy decisions concerning these contaminants.
Resumo:
Executive Summary: Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public. Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas. In addition to monitoring throughout the nation’s coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats. We hope you find this document to be valuable, and that you continue to look towards the Mussel Watch Program for information on the condition of your coastal waters. (PDF contains 118 pages)
Resumo:
A study was conducted in June 2009 to assess the current status of ecological condition and potential human-health risks throughout subtidal estuarine waters of the Sapelo Island National Estuarine Research Reserve (SINERR) along the coast of Georgia. Samples were collected for multiple indicators of ecosystem condition, including water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids, fecal coliform bacteria and coliphages), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundance of benthic fauna, fish tissue contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). Use of a probabilistic sampling design facilitated the calculation of statistics to estimate the spatial extent of the Reserve classified according to various categories (i.e., Good, Fair, Poor) of ecological condition relative to established thresholds of these indicators, where available. Overall, the majority of subtidal habitat in the SINERR appeared to be healthy, with over half (56.7 %) of the Reserve area having water quality, sediment quality, and benthic biological condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. None of the stations sampled had one or more indicators in all three categories rated as poor/degraded. While these results are encouraging, it should be noted that one or more indicators were rated as poor/degraded in at least one of the three categories over 40% of the Reserve study area, represented by 12 of the 30 stations sampled. Although measures of fish tissue chemical contamination were not included in any of the above estimates, a number of trace metals, pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) were found at low yet detectable levels in some fish at stations where fish were caught. Levels of mercury and total PCBs in some fish specimens fell within EPA guideline values considered safe, given a consumption rate of no more than four fish meals per month. Moreover, PCB congener profiles in sediments and fish in the SINERR exhibit a relative abundance of higher-chlorinated homologs which are uniquely characteristic of Aroclor 1268. It has been well-documented that sediments and fish in the creeks and marshes near the LCP Chemicals Superfund site, near Brunswick, Georgia, also display this congener pattern associated with Aroclor 1268, a highly chlorinated mixture of PCBs used extensively at a chlor-alkali plant that was in operation at the LCP site from 1955-1994. This report provides results suggesting that the protected habitats lying within the boundaries of the SINERR may be experiencing the effects of a legacy of chemical contamination at a site over 40km away. These effects, as well as other potential stressors associated with increased development of nearby coastal areas, underscore the importance of establishing baseline ecological conditions that can be used to track potential changes in the future and to guide management and stewardship of the otherwise relatively unspoiled ecosystems of the SINERR.
Resumo:
This document describes the analytical methods used to quantify core organic chemicals in tissue and sediment collected as part of NOAA’s National Status and Trends Program (NS&T) for the years 2000-2006. Organic contaminat analytical methods used during the early years of the program are described in NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) for the years 1984-1992 and 1993-1996, respectively. These reports are available from our website (http://www.ccma.nos.gov) The methods detailed in this document were utilized by the Mussel Watch Project and Bioeffects Project, which are both part of the NS&T program. The Mussel Watch Project has been monitoring contaminants in bivalves and sediments since 1986 and is the longest active national contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are sampled on a biennial and decadal timescale for bivalve tissue and sediment respectively. Similarly, the Bioeffects Assessment Project began in 1986 to characterize estuaries and near coastal environs. Using the sediment quality triad approach that measures; (1) levels of contaminants in sediments, (2) incidence and severity of toxicity, and (3) benthic macrofaunal conmmunities, the Bioeffects Project describes the spatial extent of sediment toxicity. Contaminant assessment is a core function of both projects. These methods, while discussed here in the context of sediment and bivalve tissue, were also used with other matricies including: fish fillet, fish liver, nepheloid layer, and suspended particulate matter. The methods described herein are for the core organic contaminants monitored in the NS&T Program and include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), butyltins, and organochlorines that have been analyzed consistently over the past 15-20 years. Organic contaminants such as dioxins, perfluoro compounds and polybrominated biphenyl ethers (PBDEs) were analyzed periodically in special studies of the NS&T Program and will be described in another document. All of the analytical techniques described in this document were used by B&B Laboratories, Inc, an affiliate of TDI-Brook International, Inc. in College Station, Texas under contract to NOAA. The NS&T Program uses a performance-based system approach to obtain the best possible data quality and comparability, and requires laboratories to demonstrate precision, accuracy, and sensitivity to ensure results-based performance goals and measures. (PDF contains 75 pages)