3 resultados para Pollutant dispersions

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to evaluate benthic macro-invertebrates species diversity as bio-indicators of environmental health in Bahrekan bay (in the Northwest of Persian gulf). Seasonal sediments sampling along 5 transects, 15 stations at 4 replicates (3 replicates for macrobenthos and 1 replicate for sediment analysis) was done from November 2008 to August 2009 by 0.025 m2 Van Veen grab sampler. Physical and chemical parameters of water, grain size analysis, %TOM and Ni and Va concentrations of sediments were assessed through four seasons. Macrobenthic communities after staining and sorting, using stereomicroscope have been identified. Their density in every station and every season calculated. For using of AMBI index, identified macrobenthos according to their sensitivity to stressors and pollutants, categorized into 5 ecological groups and for using of Bentix index categorized into 3 ecological groups. The diversity indices and indicators that showing ecological status were calculated. Also, the differences between physiochemical parameters of sea water, sediments TOM% and grain size, diversity indices in stations and seasons were recorded (P=0.05). The correlation coefficient determined for all parameters. According to the results of grain size analysis, bottom grain size categorized as clay. Highest percent of TOM was belong to autumn (36.39±.075) and lowest was belong to summer (19.01±0.51). Also there was positive correlation (p=0.01) between %TOM and %Clay that showing sediments with lowest size containing highest amounts of organic matters. Ni concentrations in sediments (87.80±21.25)mg/kg showed the amounts over than standards levels but Va concentrations in sediments (53.54±17.60)mg/kg showed the amounts lower than standards level. The highest density of macrobenthos was recorded for summer (8254±485) N/m2 and the lowest density was recorded for spring (3775±172)N/m2. The highest annual density was belong to mollusca (81%) and then polycheates (13%), Others (4%) and crustaceae (2%). The highest diversity was recorded for winter (Simpson index: 0.13±0.01, H':3.47±0.06) and the lowest diversity recorded for autumn (Simpson index: 0.16±0.01, H':3.17±0.06). in all stations, the highest amount of Shanon index was belong to T2S3 station in summer (4.11± 0.32) and the lowest amount was belong to T1S1 station in autumn (2.42± 0.41). The annual mean of Simpson diversity index: (0.15 ±0.04) and Shanon diversity index (3.36±0.03), illustrated that macrobenthos in Bahrekan bay have a good variation. The results of Brilluin and N1 (Number of equally common species) indices confirm the results of Simpson index. For study on the regions that diversity has a little difference between stations, with use of Ni index, the degree of differences could be better ono recognizable. According to the results of AMBI index in all seasons (autumn: 0.46±0.03; summer: 0.22±0.01; annual mean:0.31±0.01) and standards (0.0pollutant and disturbance recourses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are various tools for monitoring the concentration of pollutants on aquatic ecosystems. Today these studies are based on biological monitoring and biomarkers. The aim of this study was to measure the concentration of the acetylcholinesterase (AChE), glutathione S-transferase and catalase as biomarkers of heavy metal contamination in pearl oyster Pinctada radiata and their mechanism in aquatic ecosystems. Heavy metals lead, cadmium and nickel were measured in soft tissue and studied stations in four seasons. Samples were collected seasonally in Lavan stations, Hendurabi and Nakhilo (in the northern Persian Gulf) from spring 2013 to winter of that year by scuba diving. Pearl oysters are divided according to their shells size; shells separated from soft tissues and were transferred to the laboratory for analysis of heavy metals and enzymes. Moopam standard method for were used for measuring the concentration of heavy metals and for analyzing tissue concentrations of glutathione S-transferase in Clam the method recommended by Habig et al in 1974 were used. For measuring acetylcholinesterase Ellman method were used. Catalase contamination in pearl oyster in the supernatant obtained from the study based on the method homogeate soft tissue of mussels (Abei, 1974) was evaluated. The results showed that the concentration of lead has significant difference in sediments station, the concentration of lead in Lavan is significantly higher than the other two stations, This could be due to the movement of tanker, boats and floating refueling and with a considerable amount of wastewater containing oil and Petroleum into the water, and also due to precipitation and industrial discharges the lead in the region is increasing, land-disposed sewage sludge, has large concentrations of lead. Compare the results of this study with standards related and other similar studies at the regional and international level showed that pollutant concentration of heavy metals in all cases significantly less than all the standards and guide values associated. And also compared to other world research results have been far less than others, Being Less of the conclusion given in this research according that nickel is one of the indicators of oil pollution in the study area and emissions have been relatively low of oil. The concentration of acetylcholinesterase at several stations, in large and small sizes and in the seasons had no significant difference. Variations of catalase, and glutathione S-transferase were almost similar to each other and parameters, station and seasons were significantly different in the concentrations of these enzymes. The effects and interaction between various parameters indicate that following parameters has impact on the concentration of catalase and glutathione S-transferase. Stations; Seasonal changes in antioxidant enzymes related to (assuming a constant in salinity and oxygen) to age, reproductive cycle, availability of food and water temperature. With increasing temperature at warm season, antioxidant enzymes were increase, with increasing temperature and abundance of food in the environment the amount of antioxidant enzymes may increase. The presence of the enzyme concentration may indicate that the higher levels of the enzyme to eliminate ROS activities to be any healthier situation. At the time of gonads maturation and spawning season catalase activity increases. This study also indicates that catalase was significantly higher in the warm season. Due to low pollutants of heavy metals in the study area, a lower level of contaminants were observed in shellfish tissue incidents of international standards and strong correlation between the amount of heavy metal contamination in pearl oyster tissue and enzymes was not observed. Therefore, we can say that the pearl oyster remains in a healthy condition and the amount of enzyme is normal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is global concern that soil and water were contaminated with organic substances such as BTEX (benzene) (B), toluene (T) and xylene (x) .The presence of excessive amounts of BTEX in aqueous surroundings may have a greatly adverse impact on water quality and thus endanger public health and welfare. Carbon nanotubes (CNT) have aroused widespread attention as a new type of adsorptions due to their outstanding ability for the removal of various inorganic and organic pollutants from large volume of wastewater. Due to variety of adsorbent and their ability to adsorb pollutant, it is possible to reduce expenses and completely omit pollutant. In this CNT is used as a new adsorbent for removal pollutant such as benzene, toluene, and xylene. The result in the area of adsorbing benzene, toluene, and xylene is as follows: the changes of pH don’t affect the capacity of adsorption and the greatest amount of adsorption occurs in pH. The greatest amount of adsorption occurs when using 0.01gr CNT oxidized. Comparing CNT with CNT oxidized in term of adsorption capacity, it is proved that the adsorption capacity of CNT oxidized is much more than CNT. The result of comparing the percentage of adsorption of mentioned elements (B, X, T) is as follows; the amount of adsorption of xylene is more than toluene and toluene is more than benzene. It should be mentioned that in this research the percentage of adsorption to measure is between to 70-80.