3 resultados para Points distribution in high dimensional space
em Aquatic Commons
Resumo:
The three areas in Rookery Bay, near Marco Island and Fakahatchee Bay were sampled from July 1971 through July 1972, and 1,006,640 individual animals were collected, of which the majority (55%) came from the Marco area. The large disparity between the catches at Marco and the remaining study areas was due mainly to the appearance of high numbers of species of polychaetes and echinoderms that were of very minor importance or absent from the catches in Rookery Bay and Fakahatchee Bay. When only the major classes of animals in the catch are considered (i.e., crustaceans, fish and mollusks) the total counts for Fakahatchee (298,830) and Marco (275,075) are quite comparable but both exceed Rookery Bay (119,388) by a considerable margin. The effects of the red tide outbreak in the summer of 1971 were apparently restricted to the Rookery Bay Sanctuary and may account for some of the observed differences. For the purposes of making controlled comparisons between the study areas, three common habitats were selected in each area so that a mud bottom habitat, a sand-shell bottom habitat and a vegetated bottom habitat were located in each of the study areas. Total catches by habitat types for crustaceans, fish and mollusks and certain of the more abundant species show clearly the overwhelming importance of the vegetated bottom as a habitat for animals. By habitat the vegetated areas had the most "indicator species" with five, the mud habitat was next with three and the sand-shell habitat third with two. Thus the vegetated habitat would be the best choice if a single habitat were to be used to detect environmental changes between study areas. (PDF contains 137 pages)
Resumo:
A study of the composition and distribution of fish populations in the inshore, surface and bottom water habitats of Kangimi Reservoir showed that the most abundant family was the Cichlidae followed in order of abundance by the familiesCyprinidae, Schilbeidae, Mormyridae, Mochokidae, Characidae, centropomidae and Bagridae. Though the overall composition of families caught inn the three habitats did not vary significantly (P>0.05) only family Cichlidae showed habitat preference: there was a preponderance of Cichlidae in the inshore water habitat (P<0.05). The families Bagridae and Centropomidae were caught only in the inshore and bottom water habitats while the other families were caught from all habitats and showed no habitat preference. The dominance of primary and secondary consumers indicates high fish production potential under adequate management
Resumo:
We compared the density and biomass of resident fish in vegetated and unvegetated flooded habitats of impounded salt marshes in the northern Indian River Lagoon (IRL) Estuary of east-central Florida. A 1-m2 throw trap was used to sample fish in randomly located, paired sample plots (n = 198 pairs) over 5 seasons in 7 impoundments. We collected a total of 15 fish taxa, and 88% of the fishes we identified from the samples belonged to three species: Cyprinodon variegatus (Sheepshead Minnow), Gambusia holbrooki (Eastern Mosquitofish), and Poecilia latipinna (Sailfin Molly). Vegetated habitat usually had higher density and biomass of fish. Mean fish density (and 95% confidence interval) for vegetated and unvegetated sites were 8.2 (6.7–9.9) and 2.0 (1.6–2.4) individuals m-2, respectively; mean biomass (and 95% confidence interval) for vegetated and unvegetated sites were 3.0 (2.5–3.7) and 1.1 (0.9–1.4) g m-2, respectively. We confirmed previous findings that impounded salt marshes of the northern IRL Estuary produce a high standing stock of resident fishes. Seasonal patterns of abundance were consistent with fish moving between vegetated and unvegetated habitat as water levels changed in the estuary. Differences in density, mean size, and species composition of resident fishes between vegetated and unvegetated habitats have important implications for movement of biomass and nutrients out of salt marsh by piscivores (e.g., wading birds and fishes) via a trophic relay.