2 resultados para Points and lines
em Aquatic Commons
Resumo:
Physical control of water hyacinth consists of removing the plants from the water by hand or machines. It is considered over effetive because it involves removing the whole plants from water. The first attempt on physical control was in 1992 when weed infestation was causing serious problems to the fishing communities in Lake Kyoga. The fishermen had problems of accessing the lake as huge masses of mobile weed blocked landing sites. Furthermore, the fishers lost their nets, which were swept away by mobile water hyacinth. As a result, an integrated control strategy involving physical control (manual and mechanical removal) was put in place. Through this method, the fishers were able to open up access routes to fishing grounds even though weed mats often reblocked the access routes. In the infested lakes, manual removal offered remedial relief to fish Iandings and other access sites. Sites of strategic importance such as hydro-electric power generation dam, water intake points and docking points which had large masses of water hyacinth required heavy machinery and mechanical harvesters were used at these sites.
Resumo:
Nile perch (Lates niloticus), tilapia (Oreochromis spp), dagaa (Rastrineobola argentea, silver cyprinid), and haplochromines (Tribe Haplochromini) form the backbone of the commercial fishery on Lake Victoria. These fish stocks account for about 70% of the total catch in the three riparian states Uganda, Kenya, and Tanzania. The lake fisheries have been poorly managed, in part due to inadequate scientific analysis and management advice. The overall objective of this project was to model the stocks of the commercial fisheries of Lake Victoria with the view of determining reference points and current stock status. The Schaefer biomass model was fitted to available data for each stock (starting in the 1960s or later) in the form of landings, catch per unit effort, acoustic survey indices, and trawl survey indices. In most cases, the Schaefer model did not fit all data components very well, but attempts were made to find the best model for each stock. When the model was fitted to the Nile perch data starting from 1996, the estimated current biomass is 654 kt (95% CI 466–763); below the optimum of 692 kt and current harvest rate is 38% (33–73%), close to the optimum of 35%. At best, these can be used as tentative guidelines for the management of these fisheries. The results indicate that there have been strong multispecies interactions in the lake ecosystem. The findings from our study can be used as a baseline reference for future studies using more complex models, which could take these multispecies interactions into account.