2 resultados para Plessner, Helmut

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the supposed effects of the observed ozone depletion is the increase of solar UV-B irradiation at the seasurface. This will cause an impact on certain compartments of marine ecosystems. Especially, sensitive developmental stages of pelagic fish embryos might be affected. Embryos of dab (Limanda limanda) and plaice (Pleuronectes plalessa) were experimentally exposed 10 different amounts of UVB irradiation in a sunshine simulator. This programmable device allows the dosage of realistic solar irradiation in quality and guantity. Experiments were carried out in March 1995 and February 1996. Either artificially inserninated and reared emhryos of dab and plaice or embryos caught in the German Bight were exposed to simulated solar irradiation. The 1995 experiments served to identify the effective irradiation dosages. For the 1996 experiments irradiation applied was much lower, being dose to realistic valucs expected over the North Sea as a consequence of ozone depletion. The following end points were studied: 1. Mortality, 2. sublethal morphological effects (malformations), 3. DNA damage, 4. changes in buoyancy of embryos measured as changes in osmolarity of the perivitelline fluid. Conditions for the simulation of daylight were a c1oudless sky with a solar zenith distance of 34 % (air mass 1.2). The adopted ozone depletion was 40 % corresponding to 180 DU (Dobson Units) instead of 300 DU. In the 1995 experiments time and dosage dependent influenccs on mortality and buoyancy of embryos of dab and plaice were found. Even in those embryos which were protected from the UV-B spectral range a loss of buoyancy was registered after 12 hours in the simulator. No diffcrences in DNA integrity as determined by DNA unwinding of exposed and control embryos were found. Also with lower amounts of irradiation in the 1996 experiments dosage dependent acute mortality, malformations, and impact on the buoyancy of the emhryos was registered. Sublethal effects occurred as well in embryos protected against UV-B in the exposure chambers, but were not found in the dark controls. The impact of low dosages of UV-B on the buoyancy of pelagic fish embryos might indicate an important ecological threat and deserves further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.