7 resultados para Pleasant Touch

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Symposium in which the communications, as they were called during the meeting, comprising this volume were presented was held at the Zoological Institute of the Academy of Sciences of the U.S.S.R. in Leningrad during 13 to 16 October 1981. Conducted as part of the cooperative program of the U.S.A.-U.S.S.R. Working Group on Biological Productivity and Biochemistry of the World Ocean, the Leningrad meeting was sponsored by the Academy of Sciences of the U.S.S.R. (the Zoological Institute) and the Ministry of Fisheries of the U.S.S.R. (The Scientific Council on Fish Diseases of the Ichthyological Commission). It was an extremely interesting and successful Symposium, offering all participants the opportunity to describe the results of their studies and reviews during the course of the formal presentations and direct interchange between scientists during breaks in the program and the organized and casual social activities. The facilities provided by the Zoological Institute were quite adequate and the assistance offered by its Director, O. A. Scarlato and his staff in organization,logistics, and translation was excellent. Several of our Soviet colleagues presided over the proceedings, as did I. All were businesslike and efficient, yet graceful and accommodating. To O. N. Bauer Jell the brunt of programmatic detail and follow-up. He bore his burdens well and, with Director Scarlato and his staff, including A. V. Gussev and others of the professional and technical staffs of the Zoological Institute, helped make our stay pleasant and the Symposium productive. These organizations and individuals deserve much credit and praise as well as the thanks of their American and British colleagues. (PDF file contains 141 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff. Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was undertaken on the production of dried products from silver belly (Leiognathus splendens) silage mixed with plant filter materials. Silages produced using hydrochloric acid and/or formic acid when mixed with rice bran or maize meal and dried, yielded powders having an acceptable appearance and a pleasant odour, which are suitable for use in compounded chicken feeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Green scat namely as Scatophagus argus argus is a venomous aquarium fish belonging to Scatophagidae family. It can induce painful wounds in injured hand with partial paralysis to whom that touch the spines. Dorsal and ventral rough spines contain cells that produce venom with toxic activities. According to unpublished data collected from local hospitals in southern coastal region of Iran, S. argus is reported as a venomous fish. Envenomation induces clinical symptoms such as local pain, partial paralysis, erythema and itching. In the present study green scat (spotted scat) was collected from Persian Gulf coastal waters. SDS-PAGE indicated 12 distinct bands in the venom ranged between 10-250 KDa. The crude venom had hemolytic activity on human erythrocytes (1%) with an LC100 (Lytic Concentration) of about 1.7 μg. The crude venom can release 813 μg proteins from 0.5% casein. Phospholipase C activity was recorded at 3.125 μg of total venom. Our findings showed that the edematic activity remained over 48 h after injection. The purification of the venom was done by HPLC and 30 peaks were obtained within 80 min but only one peak in 68 min retention time showed hemolytic activity at 90% acetonitril was isolated. The area percentage of the hemolytic protein showed that this hemolytic protein consist of 32 percent of total proteins and its molecular weight was 72 KDa in SDS_PAGE. The results demonstrated that crude venom extracted from Iranian coastal border has different toxic and enzymatic activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tilapia (Oreochromis spp.) consumption is limited due to its strong muddy odour and the difficulty of processing. In addition, consumption of tilapia is minimal in urban areas because of the low availability. There are no processed market products of tilapia available in Sri Lanka. Therefore, this study was designed to develop a new marinade for tilapia and to evaluate the shelf life of the product. Twelve different treatments of varying amounts of vinegar, salt, chili powder, white pepper and garlic powder were applied to filleted tilapia, and three best treatment combinations were selected using a sensory evaluation test. Processed tilapia was stored in the freezer at -4°C. Treated samples were subjected to evaluation of sensory profile: taste, odour, colour, texture and overall acceptability. Analysis of the shelf life was carried out by using the total plate count, faecal coliform test, acidity and pH at weekly intervals. Results revealed that the third treatment (vinegar 75 ml, salt 5 g, chili powder 5 g, white pepper 5 g and garlic powder 5 g) was best in terms of colour, texture, odour, taste and the overall acceptability according to the estimated medians (6, 6, 6 and 6.33 respectively). There was no significant difference between the first and the third treatment in terms of odour and overall acceptability. There was no significant difference between the three vacuum packed treatments for acidity and pH. Acidity and pH of the three treatments were at an acceptable level, which was below pH 5.3 and above 1.95% acidity. Average bacterial count was 10 colonies and 1.33x10 super(6) colonies respectively in vacuum packed treatments and bottled samples after one week. The acceptable level of bacterial colonies is 1.00x10 super(5). Vacuum packed treatments showed a one month shelf life. In conclusion, marinades can be developed from tilapia with a pleasant taste and acceptable texture.