6 resultados para Plague.
em Aquatic Commons
Resumo:
This article reports on the success of reintroducing native crayfish (Austropotamobius pallipes) in the Sherston and Tetbury Avon, following extinction of the population from crayfish plague. The authors describe and review the survey methods that were used and identify a survey technique that was found to be the most rapid and robust for monitoring crayfish populations. Such a survey technique could be adopted as a standard method.
Resumo:
This is the Aphanomycosis of crayfish: crayfish plague report produced by the Environment Agency in 2000. Crayfish plague is an extremely virulent fungal disease of European crayfish species, the white clawed or stone crayfish of Western Europe Austropotamobius pallipes, the Noble crayfish of northern Europe Astacus astacus and the narrow clawed crayfish of Eastern Europe, Astacus leptodactylus. The white claw crayfish A. pallipes is the indigenous native crayfish of the British Isles. Until the early 1980s there were extensive healthy populations of this crayfish in almost all suitable alkaline river and lake environments in England and Wales as far north as Northumberland. The conservation importance of this native crayfish is widely recognised. This report provides a general review of the literature of crayfish plague, including an overview of its spread through the British Isles from CEFAS records. Information on current diagnostic methods from the Office International des Epizooties (OIE) Aquatic Disease Manual is provided. Information on the taxonomy, morphology and physiology of the pathogen is reviewed, together with the pathogenicity and pathology of the disease and current means of prevention and control.
Resumo:
This account concentrates on the six species of crayfish found in Austria, and the current state of knowledge on their distribution and laws affecting conservation. In general the occurrence and distribution of crayfish in Austria is poorly known, although information obtained by researchers and the general public, after careful checking, is increasing. Three native crayfish species occur in Austria: Austropotamobius torrentium which is relatively widespread, A. pallipes with a restricted distribution, and Astacus astacus which is widespread. Three species of non-native (alien) crayfish have been recorded from a total of 158 localities in Austria. They are Astacus leptodactylus from eastern Europe, and two Nearctic species: Pacifastacus leniusculus and Orconectes limosus. The introduction of alien species causes considerable problems as they act as vectors of crayfish plague and are able to outcompete native species by higher reproductive capacities.
Resumo:
Signal crayfish (Pacifastacus leniusculus) have existed in the upper reaches of Broadmead Brook in Wiltshire since 200 individuals were introduced at West Kington in 1981. The population has expanded upstream and downstream since this introduction, however, giving rise to concerns that it may potentially threaten the native crayfish population further downstream. Signal crayfish can act as a vector of crayfish plague - a disease caused by the fungus Aphanomyces astaci Schikora which results in almost complete mortality to the native, white-clawed crayfish Austropotamobius pallipes. The native crayfish in Broadmead Brook have not yet succumbed to crayfish plague and are currently free of the disease. However, as signal crayfish appear to out-compete the native species, the native population could still be under threat. In this article, we highlight the findings of previous crayfish surveys on Broadmead Brook and describe work undertaken in summer 2001 to map the current distribution of native and signal crayfish. Finally, options for controlling the spread of signal crayfish are discussed.
Resumo:
Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.
Resumo:
The Crown-of-Thorns starfish Acanthaster planci is a predator of coral and has been responsible for the widespread destruction of coral reefs. In Sri Lanka this starfish was first reported by Clarke in 1915. Recently skin-divers reported that Acanthaster planci was present in very large numbers in the coastal waters off Trincomalee, especially on the coral formations around Pigeon Island. It is well known that the multiplication of the starfish to plague proportions is a serious threat to the coral reef formations round the Island. If it were allowed to continue its depredations the entire coral reef belt round the Island might be destroyed in a short time. The monsoon waves would then convert the dead coral to rubble. In the absence of a barrier against the advancing waves during the monsoon it would also lead to serious erosion of the shoreline. The coral reef fish would also disappear with the destruction of the coral formations. On account of these considerations it was decided to conduct a survey of the Crown-of-Thorns starfish in eastern coastal waters in order to estimate the magnitude of the population of the starfish in these waters.