4 resultados para Physics, Nuclear|Physics, Elementary Particles and High Energy

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal storms, and the strong winds, heavy rains, and high seas that accompany them pose a serious threat to the lives and livelihoods of the peoples of the Pacific basin, from the tropics to the high latitudes. To reduce their vulnerability to the economic, social, and environmental risks associated with these phenomena (and correspondingly enhance their resiliency), decision-makers in coastal communities require timely access to accurate information that affords them an opportunity to plan and respond accordingly. This includes information about the potential for coastal flooding, inundation and erosion at time scales ranging from hours to years, as well as the longterm climatological context of this information. The Pacific Storms Climatology Project (PSCP) was formed in 2006 with the intent of improving scientific understanding of patterns and trends of storm frequency and intensity - “storminess”- and related impacts of these extreme events. The project is currently developing a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies and decision-makers in key sectors, including: water and natural resource management, agriculture and fisheries, transportation and communication, and recreation and tourism. The PSCP is exploring how the climate-related processes that govern extreme storm events are expressed within and between three primary thematic areas: heavy rains, strong winds, and high seas. To address these thematic areas, PSCP has focused on developing analyses of historical climate records collected throughout the Pacific region, and the integration of these climatological analyses with near-real time observations to put recent weather and climate events into a longer-term perspective.(PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This partial translation of a longer article describes the phenomenon of ”Blasensand”. Blasensand is formed when sedimentation of dried out sand is suddenly flooded from above. A more detailed explanation of Blasensand is given in this translated part of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the well known sea ice phase diagram, equations are derived for determining the brine and gas content of sea Ice for high temperatures (range 0 to -2 °C) and low salinities. The presently widely used equations of Cox and Weeks (1982) are valid only for temperatures below -2°C. Fresh-water ice is used as a boundary condition for the equations. The relative salt concentrations in brine are_assumed to be the same as in normal (or standard) seawater. Two sets of equations are presented: 1) accurate formulae based on UNESCO standard sea water equations, and 2) approximate formulae based on general properties of weak solutions. The approximate formulae are not essentially different from the classical system which basically assumes the freezing point to be a linear function of fractional salt content. The agreement between the two approaches is excellent and the approximate system is good enough for most applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the face of dramatic declines in groundfish populations and a lack of sufficient stock assessment information, a need has arisen for new methods of assessing groundfish populations. We describe the integration of seafloor transect data gathered by a manned submersible with high-resolution sonar imagery to produce a habitat-based stock assessment system for groundfish. The data sets used in this study were collected from Heceta Bank, Oregon, and were derived from 42 submersible dives (1988–90) and a multibeam sonar survey (1998). The submersible habitat survey investigated seafloor topography and groundfish abundance along 30-minute transects over six predetermined stations and found a statistical relationship between habitat variability and groundfish distribution and abundance. These transects were analyzed in a geographic information system (GIS) by using dynamic segmentation to display changes in habitat along the transects. We used the submersible data to extrapolate fish abundance within uniform habitat patches over broad areas of the bank by means of a habitat classification based on the sonar imagery. After applying a navigation correction to the submersible-based habitat segments, a good correlation with major boundaries on the backscatter and topographic boundaries on the imagery were apparent. Extrapolation of the extent of uniform habitats was made in the vicinity of the dive stations and a preliminary stock assessment of several species of demersal fish was calculated. Such a habitat-based approach will allow researchers to characterize marine communities over large areas of the seafloor.