8 resultados para Physical culture

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the fourth quarter (October‐December) field survey undertaken during December 2013; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as a mandatory requirement under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors (water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, nutrient status), algal aquatic invertebrates (micro‐invertebrates/zooplankton and macro‐benthos) and fish communities. During the year 2013, it was agreed with management to undertake quarterly environment monitoring surveys. However, the first quarter (January‐March 2013) survey was missed out due to late decision. The present report therefore covers the survey taken during the second quarter (April‐June 2013). Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first year-round quarterly surveys were completed for the year 2011. For the year 2012, SON management decided to change the frequency of the surveys from quarterly to biannual and the first such survey, was undertaken in June 2012. The second survey was undertaken in December 2012 and is the subject of this report: Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON cage study sites were coded as downstream of cages (DSC), within cages (WIC) and upstream of cages (USC). Physical-chemical parameters (water column temperature, dissolved oxygen, pH, conductivity, were measured in-situ with a pre-calibrated hydrolab at each site. A digital Echo Sounder was used to determine the total water column depth at each site. A black and white Secchi disc was used to determine water column transparency. Coordinate locations were determined with a GPS device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back-stopping to enable quarterly environment monitoring of the cage site; a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are physical-chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, BOO, pH, conductivity), and selected nutrients), algal community (including primary production), aquatic invertebrates (zooplankton and macrobenthos) and the fish community. This report presents field observations made during the third quarter (July-September) field survey undertaken during August 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located in northern Lake Victoria close to the headwaters of the River Nile. The proprietors of the farm have established a collaborative agreement with the National Fisheries Resources Research Institute (NaFIRRI) to undertake quarterly environment monitoring surveys of the fish cage site at Bugungu in the Napoleon Gulf. This activity is a mandatory requirement of the National Environment Management Authority (NEMA) of Uganda. Therefore NAFIRRI undertakes monitoring surveys once every quarter covering selected physical‐chemical parameters including water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity and nutrient status; algal, zooplankton, macro‐benthos and fish communities. While the first quarter survey of 2013 (January‐March) was missed out due to late decision, the second quarter monitoring survey was dully undertaken in May 2013 and a technical report was compiled and submitted to the client. The present report covers the third quarter survey (July‐September) undertaken in September 2013. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment quality and selected aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, redox potential and turbidity; nutrient status, algal and invertebrate communities (micro‐invertebrates/zooplankton and macro‐invertebrates/macro‐benthos) as well as fish community. The first year‐round quarterly surveys were completed for the year 2011. It was decided by SON management to change the frequency of the monitoring surveys to biannual starting in the year 2012 and the first such survey, which is the subject of this report, was undertaken in June 2012. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the first quarter (January‐March) field survey undertaken during March 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota. The

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The culture of Penaeus monodon has explicitly defined the need for diet formulations or supplementary feeds that would promote optimum growth and survival of the animal. A total of 28 feed combinations were developed for P. monodon. Fish meal, shrimp head meal, squid head meal, Ascetes spp. rice bran, and soybean cake were used as primary ingredients in these feeds. The commercial vitamin mix No. 22 was added to the dry ingredients. Gelatinized corn starch and wheat flour were used as binders. The pellets were extruded using a portable kitchen grinder with a diameter of 4 mm. The products were either sun-dried for 8 hours or oven-dried overnight at 50 degree C to stabilize moisture at 8-10%. The pellets were then kept in covered glass bottles and stored in the laboratory at room temperature. The cost of the feeds excluding labour were also computed. The pellets were analyzed for protein, fat, carbohydrate, crude fiber, ash, and moisture contents using standard procedures. They were also analyzed for water stability. To test the stability of pellets in water, 2-g samples were placed in plankton nets (mesh #40) and suspended in water for two, and six hours. The undissolved samples were then vacuum-dried and the moisture determined. Cost of the feeds ranged from P1.10 to P2.60 per kg depending on the feed ingredient. Squid and Ascetes spp. were rather expensive for use as basic ingredients. Proximate analysis of dry weight showed percentage protein content ranged from 20-63 g; fat, 8-20 g; carbohydrate (by difference), 11-36 g; ash, 8-28 g; moisture, 6-11 g; and crude fiber, 5 . 13 g. Stability tests showed that after two hours, 35-88% of solids remained intact and after 6 hours, 20-55% of the pellets remained undissolved. When a pellet disintegrates easily, pollution of the water occurs. Chances for the shrimp to feed on the pellet is minimized when the pellet is unstable. Thus, the search for a more compact feed pellet has to be continued.