2 resultados para Phenols.

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty sites were sampled in southern Biscayne Bay and Manatee Bay in December 1999 to determine the extent of toxicity in sediments. Analyses and assays included: pesticides and phenols in seawater; chemical contaminants in sediment; amphipod mortality, HRGS P450, sea urchin sperm fertilization and embryology, MicrotoxTM, MutatoxTM, grass shrimp AChE and juvenile clam mortality assays; sea urchin sperm, amphipod and oyster DNA damage; and benthic community assessment. Sediment sites near the mouth of canals showed evidence of contamination. Contaminant plumes and associated toxicity do not appear to extend seaward of the mouth of the canals in an appreciable manner. Concentrations of contaminants in the sediments in open areas of Biscayne and Manatee Bays are generally low. (PDF contains 140 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents the findings of the first phase of an investigation into the cause(s) of taints in salmonid fish in the River Ribble, commissioned by the North West Region of the Environment Agency. There have been reports of tainting in fish taken from both the estuary and the freshwater river for many years, but the contaminants involved and their source and transport pathway are unknown. Tainting by phenols has been of specific concern in the past. The work programme comprised: examination of tainting reports; collection of salmonids; their submission for taste testing; literature review; analysis of fish flesh using gas chromatography-mass spectrometry (GCMS) and analysis of river bed sediments. From enquiries, three common descriptors of the 'taint' were identified: disinfectanty; diesely; and muddy. The incidence of taints appears transient/irregular and may therefore relate to the incidence of discharges and specific threshold concentrations of pollutants. The literature review showed that a wide range of organic compounds including many industrial chemicals, and others which are naturally occurring, can taint fish flesh. Taste testing confirmed the presence of tainted salmon and trout in the Ribbie Catchment. It identified a low incidence of 'untainted' fish but demonstrated the 'taint' to be not specific to one tainting substance. Differences were found both between the species and fish from different parts of the catchment. Overall, most fish exhibited an unpleasant flavour, though this may have been influenced to some extent by the fact that most were sexually mature. The worst tainting was found in trout from the river Calder: a soapy/chemical aftertaste. An unpleasant earthy/musty flavour distinguished the salmon from the trout. Phenol was shown to have been a minor issue during the present study, whilst no hydrocarbon taints were identified. Examination of tissue from the eight salmon exhibiting the worst taints revealed the presence of aromatic hydrocarbons, but no phenolic compounds. Other notable substances present in the fish were siioxanes and benzophenone. Data from sediment analysis is presented which shows the main compounds present to be aromatic and polyaromatic hydrocarbons, that concentrations at two locations R. Darwen and R. Calder were significantly higher than at other sites, and that some phenolic compounds were detected at low levels. A paucity of fish flesh taste descriptors linked to specific compounds prevented an obvious correlation to be made between the tastes observed and the organic compounds detected. Descriptors frequently used by the taste testing panel (e.g. earthy, musty, astringency, chemical) cannot be linked to any of the compounds identified in the tissue analyses. No taste information was available from the literature on siioxanes. Aromatic hydrocarbons though present in tissue and sediments were not identified as tainting.