24 resultados para Percoll gradients

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projects of the scope of the restoration of the Florida Everglades require substantial information regarding ecological mechanisms, and these are often poorly understood. We provide critical base knowledge for Everglades restoration by characterizing the existing vegetation communities of an Everglades remnant, describing how present and historic hydrology affect wetland vegetation community composition, and documenting change from communities described in previous studies. Vegetation biomass samples were collected along transects across Water Conservation Area 3A South (3AS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental variability affects the distributions of most marine fish species. In this analysis, assemblages of rockfish (Sebastes spp.) species were defined on the basis of similarities in their distributions along environmental gradients. Data from 14 bottom trawl surveys of the Gulf of Alaska and Aleutian Islands (n=6767) were used. Five distinct assemblages of rockfish were defined by geographical position, depth, and temperature. The 180-m and 275-m depth contours were major divisions between assemblages inhabiting the shelf, shelf break, and lower continental slope. Another noticeable division was between species centered in southeastern Alaska and those found in the northern Gulf of Alaska and Aleutian Islands. The use of environmental variables to define the species composition of assemblages is different from the use of traditional methods based on clustering and nonparametric statistics and as such, environmentally based analyses should result in predictable assemblages of species that are useful for ecosystem-based management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity gradient power (SGP) is the energy that can be obtained from the mixing entropy of two solutions with a different salt concentration. River estuary, as a place for mixing salt water and fresh water, has a huge potential of this renewable energy. In this study, this potential in the estuaries of rivers leading to the Persian Gulf and the factors affecting it are analysis and assessment. Since most of the full water rivers are in the Asia, this continent with the potential power of 338GW is a second major source of energy from the salinity gradient power in the world (Wetsus institute, 2009). Persian Gulf, with the proper salinity gradient in its river estuaries, has Particular importance for extraction of this energy. Considering the total river flow into the Persian Gulf, which is approximately equal to 3486 m3/s, the amount of theoretical extractable power from salinity gradient in this region is 5.2GW. Iran, with its numerous rivers along the coast of the Persian Gulf, has a great share of this energy source. For example, with study calculations done on data from three hydrometery stations located on the Arvand River, Khorramshahr Station with releasing 1.91M/ energy which is obtained by combining 1.26m3 river water with 0.74 m3 sea water, is devoted to itself extracting the maximum amount of extractable energy. Considering the average of annual discharge of Arvand River in Khorramshahr hydrometery station, the amount of theoretical extractable power is 955 MW. Another part of parameters that are studied in this research, are the intrusion length of salt water and its flushing time in the estuary that have a significant influence on the salinity gradient power. According to the calculation done in conditions HWS and the average discharge of rivers, the maximum of salinity intrusion length in to the estuary of the river by 41km is related to Arvand River and the lowest with 8km is for Helle River. Also the highest rate of salt water flushing time in the estuary with 9.8 days is related to the Arvand River and the lowest with 3.3 days is for Helle River. Influence of these two parameters on reduces the amount of extractable energy from salinity gradient power as well as can be seen in the estuaries of the rivers studied. For example, at the estuary of the Arvand River in the interval 8.9 days, salinity gradient power decreases 9.2%. But another part of this research focuses on the design of a suitable system for extracting electrical energy from the salinity gradient. So far, five methods have been proposed to convert this energy to electricity that among them, reverse electro-dialysis (RED) method and pressure-retarded osmosis (PRO) method have special importance in practical terms. In theory both techniques generate the same amount of energy from given volumes of sea and river water with specified salinity; in practice the RED technique seems to be more attractive for power generation using sea water and river water. Because it is less necessity of salinity gradient to PRO method. In addition to this, in RED method, it does not need to use turbine to change energy and the electricity generation is started when two solutions are mixed. In this research, the power density and the efficiency of generated energy was assessment by designing a physical method. The physical designed model is an unicellular reverse electro-dialysis battery with nano heterogenic membrane has 20cmx20cm dimension, which produced power density 0.58 W/m2 by using river water (1 g NaCl/lit) and sea water (30 g NaCl/lit) in laboratorial condition. This value was obtained because of nano method used on the membrane of this system and suitable design of the cell which led to increase the yield of the system efficiency 11% more than non nano ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general circulation pattern in the western boundary of the SW Atlantic is dominated by the opposite flows of Malvinas (-Falkland)and Brazil Current. In the Confluence region both currents separate from the continental slope and flow offshore creating an area of strong contracts and complex dynamics. The shelf-break fronts off Argentina mark the transition between shelf waters of mixed origin and nutrient rich Malvinas waters. Two areas deserve special attention due to the steep gradients introduced by the outflow of important sources of continental waters: the Rio de la Plata and the Magellan Strait to the north and south of the study area. Characteristics of the front is the high primary and secondary production, and the presence of important invertebrate and fish stocks that concentrate along the front to feed or spawn. The area comprises nearly 30 o/o (333 million U$S in 1995)of all Argentine catches of fish and squid. Resources in the area, beyond the EEZ limits, support international fisheries mainly of Russia, Poland and Spain. (Document contains 15 pages & figs)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Argentine Republic is situated in the southernmost portion of the American continent, occupying over 2,785,600 km2 not including the Antarctic territory. The country ranges from subtropical areas (21º46’S) to subantarctic regions (55º03’S), extending latitudinally over about 4,000 km. It possesses significant latitudinal and altitudinal variation (33º of latitudinal range, and heights from Bajo de San Julián in Santa Cruz province at 105 m below sea level, up to Mt. Aconcagua, 6,959 m over sea level), as well as two gradients of physical variability, extending in north-south and east-west directions. Owing to these features, the country presents a wide range of climates and soil types, being one of the countries with greatest diversity of biogeographical units (Lean et al., 1990, In: Bertonatti & Corcuera, 2000). There are four main hydrographic systems: Río de la Plata basin, the Atlantic and Pacific drainages, and several endorrheic systems. Within these basins, the ichthyofaunistic assemblage is well represented, with different magnitude in accordance with the different taxonomic groupings and regions considered. From an ichthyogeographic standpoint, and according to the works of Ringuelet (1975) and Arratia et al. (1983), Argentina is included in the Brasilic and Austral Subregions. The first of these is represented by two domains: the Andean Domain, comprising the southernmost portion of Titicaca Province, and the Paranensean Domain, including part of Alto Paraná and Paranoplatensean Provinces. The Austral Subregion is represented in Argentina by the Subandean-Cuyan and Patagonian Provinces. The present survey indicates that there are about 441 fish species in Argentina, distributed throughout the country; this number represents less than 10% of the total fish species occurring in the Neotropical Region. There is a recognizable trend of faunal impoverishment, both in North-South and East-West direction, reaching its maximum expression in the provinces of Tierra del Fuego (situated at approximately 52º30’S to 55ºS, and 65ºS to 68º50’W) and San Juan (approximately 28º50’S and 67ºW to 70º45’W), which have 4 and 5 fish species respectively. In north-south direction, one of the regional indicators of this phenomenon is the Salado river basin in Buenos Aires province, which constitutes the southern distributional boundary for the majority of the paranoplatensean ichthyofauna; 12 of the families occurring in the Paraná-Plata system are absent from this pauperized paranensean ichthyofaunal assemblage. Most of the continental fish fauna of Argentina belongs to the primary division of Myers (1949), while some elements are included in the secondary division and others in an amphibiotic or ‘marine penetration’ category. This ichthyofaunistic scope encompasses a wide range of morphological, biological, ecological and ethological types (benthic and pelagic, migrating and sedentary, haematophagous or parasites, annual species, inhabitants of plains or heights, estivation-adapted, etc.) inhabiting different regions within the national territory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "Río de la Plata" River is one of the less studied systems of the basin with respect to its biological and ecological aspects. Twenty four and twenty seven surface stations were sample on September 22-23 and November 22-23, 1982, respectively. The section studied is part of the zone called inner "Río de la Plata" River. The discharge was 29.000 m3/s in September and 45.200 m3/s in November. Total phosphorus (PT), total organic nitrogen (NOT), chemical oxygen demad (COT) and total cholrophyll were measured. Dissolved oxygen (DO), turbidity (TURB), pH and electrical conductivity (K20) were also measured at the surface with a HORIBA U7 sensor on November 1982. PT was 72-208 mg/m3 and 66-205 mg/m3 in September and November repectively; the higher values were near the Argentinian coast and the outer zone. NOT was 33-106 µM and 49-117 µM and CHL was 1.4-5.8 mg/m3 and 1.3-9.4 mg/m3. TURB was between 44 and 240 NTU in November; the maximun value were obseved in the central zone. Steep K20 gradients were found near both coast. The reduced organic carbon load into the lower and external part of the "Río de la Plata" River was estimated. (Document contains 40 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report we describe the temporal and spatial distributions of inorganic nutrients over Georges Bank and in adjacent waters and discuss major features with respect to tbe nutrient environments of pbytoplankton. Nitrate and orthophosphorus were rapidly depleted from the surface layer of much of the study area in spring, but major differences were found between the shallow areas on Georges Bank and the surrounding stratified waters. In the "well-mixed" area of Georges Bank, the depletion encompassed the entire water column and ammonium became the dominant form of inorganic nitrogen throughout. Dissolved silicon was depleted slowly over central Georges Bank, reaching a minimum concentration in September while orthophosphorus gradually increased during the summer. The nutrient environment of phytoplankton over central Georges Bank may be described as vertically uniform but temporally changing in the relative availability of the various nutrients. In areas that undergo stratification (e.g., the central Gulf of Maine), a quasi-steady state was established as the surface water layer formed, consisting of declining nutrient gradients from below the euphotic layer to the top of the water column. These intergrading nutrient environments are relatively stable through time. Destratification reintroduced nutrients to depleted areas beginning in October; however, dissolved silicon was again depleted over shallow Georges Bank in late autumn though nitrate remained abundant. Slope water has been found to enter the bottom layer of the Gulf of Maine via the Northeast Channel. High nutrient concentrations observed in the bottom water of the Northeast Channel are consistent with this mechanism being the nutrient source for the Gulf of Maine. (PDF file contains 40 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ENGLISH: Seasonal changes in the climatology, oceanography and fisheries of the Panama Bight are determined mainly by the latitudinal movements of the ITCZ over the region. Evaporation is about 980 mm annually. Rainfall is probably much less than previous estimates because of a discontinuity in the ITCZ. Freshwater runoff from the northern watershed varies from 22 X 109 m3/mo in October-November to 11 X 109 m3/mo in February-March; from the southeastern watershed it varies from 16 X 109 m3/mo in April-June to 9 X 109 m3/mo in October-December. Total annual runoff is about 350 X 109m3. A marked salinity front is found at all seasons off the eastern shore. In the northern part of the Bight temperatures in the upper layers remained fairly constant from May to November; by February the mean temperature had decreased by 4°C and sharp gradients existed in the geographic distributions. Salinities in the upper layers decreased steadily from May to November; by February the mean salinity had increased by 2.5‰. The mean depth of the mixed layer increased from 27 m in May to 40 m in November; by February upwelling decreased it to 18 m. Between November and February upwelling had doubled the amount of P04-P and tripled that of NO3-N in the euphotic zone; surface phytoplankton production and standing crop, and zooplankton concentrations also doubled during this period. Upwelling was about 1.5 m/mo during May-November and about 9.0 m/mo during November-February, the annual total is about 48 m, Mean primary production is about 0.3 gC/m2day during May-December and about 0.6 gC/m2day during January-April; annual production is about 140 gC/m2. A thermal ridge occurred in February running from the northern to the southwestern part of the Bight. Within this ridge was a marked thermal dome coinciding with the center of the cyclonic circulation cell. Upwelling in the dome averaged 16 m/mo in November-February. The fisheries of the Panama Bight annually produce about 30,000 metric tons of food species and about 68,000 m.t. of species used for reduction. Most attempts to further the understanding of tuna ecology were unsuccessful. The apparent abundances of yellowfin and skipjack in the northern part of the Bight appear to be related to the seasonal cycle of upwelling and enrichment, as abundances are greatest in April and May when food appears to be plentiful. The life-cycle of the anchoveta in the Gulf of Panama also appears to be related to upwelling; the species mass varies from about 39,000 m.t. in December to about 169,000 m.t, in April. About 19.1 X 1012 anchoveta eggs are spawned annually. The life-cycles of shrimp in the Panama Bight appear to be related to upwelling as catches are greatest in May-July, about 3-5 months after peak upwelling, and annual catches are inversely correlated with sea level. SPANISH: Los cambios estacionales en la climatología, oceanografía y pesquerías del Panamá Bight están determinados principalmente por el movimiento latitudinal sobre la región de la Zona de Convergencia Intertropical (ZCIT). La evaporación es de unos 980 mm al año. La pluviosidad es probablemente muy inferior a las estimaciones previas a causa de la descontinuidad en la ZCIT. El drenaje de agua dulce, de la vertiente septentrional, varía de 22 x 109m3/mes en octubre-noviembre hasta 11 x 109m3/mes en febreromarzo; el de la vertiente sudeste varía de 16 x 109m3/mes en abril-junio a 9 x 109m3/mes en octubre-diciembre. El drenaje total, anual, es alrededor de 350 x 109m3. En todas las estaciones frente al litoral oriental se encuentra un frente de salinidad marcada. En la parte septentrional del Bight las temperaturas en las capas superiores permanecieron más bien constantes de mayo a noviembre; en febrero la temperatura media había disminuido en unos 4°C y existieron gradientes agudos en las distribuciones geográficas. Las salinidades en las capas superiores disminuyeron constantemente de mayo a noviembre; en febrero la salinidad media había aumentado en 2.5‰. La profundidad media de la capa mixta aumentó de 27 m en mayo a 40 m en noviembre; en febrero el afloramiento disminuyó el espesor de la capa mixta hasta 18 m. Entre noviembre y febrero el afloramiento había duplicado la cantidad de PO4-P y triplicado la de NO3-N en la zona eufótica; la producción superficial de fitoplancton y la biomasa primaria y las concentraciones de zooplancton también se duplicaron durante este período. El afloramiento era cerca de 1.5 mimes durante mayo-noviembre y de unos 9.0 mimes durante noviembre-febrero, el total anual es de unos 48 m. La producción media primaria es aproximadamente de 0.3 gC/m2 al día durante mayo-diciembre y cerca de 0.6 gC/m2 al día durante enero-abril; la producción anual es de unos 140 gC/m2. En febrero apareció una convexidad termal que se extendió de la parte norte a la parte sudoeste del Bight. Dentro de esta convexidad se encontró un domo termal marcado el cual coincidió con el centro de la circulación ciclonal de la célula. El afloramiento en el domo tuvo un promedio de 16 mimes en noviembre-febrero. Las pesquerías del Panamá Bight producen anualmente de cerca 30,000 toneladas métricas de especies alimenticias y unas 68,000 t.m. de especies usadas para la reducción. La mayoría de los esfuerzos realizados con el fin de adquirir más conocimiento sobre la ecología del atún no tuvo éxito. La abundancia aparente del atún aleta amarilla y del barrilete en la parte septentrional del Bight parece estar relacionada con el ciclo estacional del afloramiento y del enriquecimiento, ya que la abundancia mayor en abril y mayo cuando parece que hay abundancia es de alimento. El ciclo de vida de la anchoveta en el Golfo de Panamá parece también que está relacionada al afloramiento. La masa de la especie varía de unas 39,000 t.m. en diciembre a cerca de 169,000 t.m. en abril. Aproximadamente 19.1 x 1012 huevos de anchoveta son desovados anualmente. Los ciclos de vida del camarón en el Panamá Bight parecen estar relacionados con el afloramiento ya que las capturas son superiores en mayo-julio, unos 3-5 meses después del ápice del afloramiento, y las capturas anuales se correlacionan inversamente con el nivel del mar. (PDF contains 340 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extreme dry-down and muck-removal project was conducted at Lake Tohopekaliga, Florida, in 2003-2004, to remove dense vegetation from inshore areas and improve habitat degraded by stabilized water levels. Vegetation was monitored from June 2002 to December 2003, to describe the pre-existing communities in terms of composition and distribution along the environmental gradients. Three study areas (Treatment-Selection Sites) were designed to test the efficacy of different treatments in enhancing inshore habitat, and five other study areas (Whole-Lake Monitoring Sites) were designed to monitor the responses of the emergent littoral vegetation as a whole. Five general community types were identified within the study areas by recording aboveground biomasses and stem densities of each species. These communities were distributed along water and soils gradients, with water depth and bulk density explaining most of the variation. The shallowest depths were dominated by a combination of Eleocharis spp., Luziola fluitans, and Panicum repens; while the deeper areas had communities of Nymphaea odorata and Nuphar luteum; Typha spp.; or Paspalidium geminatum and Hydrilla verticillata. Mineralized soils were common in both the shallow and deep-water communities, while the intermediate depths had high percentages of organic material in the soil. These intermediate depths (occurring just above and just below low pool stage) were dominated by Pontederia cordata, the main species targeted by the habitat enhancement project. This emergent community occurred in nearly monocultural bands around the lake (from roughly 60–120 cm in depth at high pool stage) often having more diverse floating mats along the deep-water edge. The organic barrier these mats create is believed to impede access of sport fish to shallow-water spawning areas, while the overall low diversity of the community is evidence of its competitive nature in stabilized waters. With continued monitoring of these study areas long-term effects of the restoration project can be assessed and predictive models may be created to determine the efficacy and legitimacy of such projects in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project investigated the production of nitrate (nitrification) by bacteria in lakes. The work was undertaken as nitrification is a key process in the nitrogen cycle and previous estimates of rates of nitrification were unreliable. When different methods were used to estimate rates of nitrification within sediment deposits different results were obtained. Investigation' of specific aspects of these methodologies has allowed some rationalization of these observations and also enabled comparisons of previously published data which, beforehand, was not possible. However, it was not clear which methods gave the most reliable rate estimates. Calculation of a nitrate budget for Grasmere lake indicated that the use of methods which involved the mixing of surface sediments (and therefore disrupted preformed nutrient gradients) overestimated the rate of nitrification. The study concludes that slight changes in the method used to prepare sediment slurries can result in large changes, in the measured nitrifying activity. This makes comparisons between studies, using different methods, extremely difficult. Methods to study sediment nitrification processes which do not disrupt preformed substrate gradients within the sediment provide the most reliable rate estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The word ”Broads” is used to describe a series of relatively shallow lakes resulting from the flooding of medieval peat diggings. Broadland is essentially freshwater, but because the rivers have such low gradients the lower reaches are brackish. The influence of tide is particularly apparent on the River Yare; in Norwich 40 km from the sea there is a vertical movement of half a metre at spring tide. This study examines the problems that the broadlands are facing. The problems are basically the progressive loss of aquatic plants, in particular the macro- phytes, animal life, outbreaks of avian botulism, occasional fish kills due to a toxin produced by the blue-green alga Prymesium parvum and the emergence of very heavy algal blooms. The main factor for the deteriation of the Broaslands is the eutrophication resulting from enhanced nutrient inputs, in particular of nitrates and phosphates, from a variety of sources. The most important of these are sewage effluents, agricultural drainage, which includes fertilisers and nutrient rich effluents from piggeries and dairy un