7 resultados para Paton, Andy

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change has rapidly emerged as a significant threat to coastal areas around the world. While uncertainty regarding distribution, intensity, and timescale inhibits our ability to accurately forecast potential impacts, it is widely accepted that changes in global climate will result in a variety of significant environmental, social, and economic impacts. Coastal areas are particularly vulnerable to the effects of climate change and the implications of sea-level rise, and coastal communities must develop the capacity to adapt to climate change in order to protect people, property, and the environment along our nation’s coasts. The U.S. coastal zone is highly complex and variable, consisting of several regions that are characterized by unique geographic, economic, social and environmental factors. The degree of risk and vulnerability associated with climate change can vary greatly depending on the exposure and sensitivity of coastal resources within a given area. The ability of coastal communities to effectively adapt to climate change will depend greatly on their ability to develop and implement feasible strategies that address unique local and regional factors. A wide variety of resources are available to assist coastal states in developing their approach to climate change adaptation. However, given the complex and variable nature of the U.S. coastline, it is unlikely that a single set of guidelines can adequately address the full range of adaptation needs at the local and regional levels. This panel seeks to address some of the unique local and regional issues facing coastal communities throughout the U.S. including anticipated physical, social, economic and environmental impacts, existing resources and guidelines for climate change adaptation, current approaches to climate change adaptation planning, and challenges and opportunities for developing adaptation strategies. (PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The University of Hawaii Sea Grant College Program (UHSG) in partnership with the Hawaii Department of Land and Natural Resources (DLNR), Office of Conservation and Coastal Lands (OCCL) is developing a beach and dune management plan for Kailua Beach on the eastern shoreline of Oahu. The objective of the plan is to develop a comprehensive beach management and land use development plan for Kailua Beach that reflects the state of scientific understanding of beach processes in Kailua Bay and abutting shoreline areas and is intended to provide long-term recommendations to adapting to climate change including potential coastal hazards such as sea level rise. The development of the plan has lead to wider recognition of the significance of projected sea level rise to the region and provides the rational behind some of the land use conservation strategies. The plan takes on a critical light given global predictions for continued, possibly accelerated, sea-level rise and the ongoing focus of intense development along the Hawaiian shoreline. Hawaii’s coastal resource managers are faced with the daunting prospect of managing the effects of erosion while simultaneously monitoring and regulating high-risk coastal development that often impacts the shoreline. The beach and dune preservation plan is the first step in a more comprehensive effort prepare for and adapt to sea level rise and ensure the preservation of the beach and dune ecosystem for the benefit of present and future generations. The Kailua Beach and Dune Management plan is intended to be the first in a series of regional plans in Hawaii to address climate change adaptation through land use planning. (PDF contains 3 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY: At present, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) criteria used to assess whether a population qualifies for inclusion in the CITES Appendices relate to (A) size of the population, (B) area of distribution of the population, and (C) declines in the size of the population. Numeric guidelines are provided as indicators of a small population (less than 5,000 individuals), a small subpopulation (less than 500 individuals), a restricted area of distribution for a population (less than 10,000 km2), a restricted area of distribution for a subpopula-tion (less than 500 km2), a high rate of decline (a decrease of 50% or more in total within 5 years or two generations whichever is longer or, for a small wild population, a decline of 20% or more in total within ten years or three generations whichever is longer), large fluctuations (population size or area of distribution varies widely, rapidly and frequently, with a variation greater than one order of magnitude), and a short-term fluctuation (one of two years or less). The Working Group discussed several broad issues of relevance to the CITES criteria and guidelines. These included the importance of the historical extent of decline versus the recent rate of decline; the utility and validity of incorporating relative population productivity into decline criteria; the utility of absolute numbers for defining small populations or small areas; the appropriateness of generation times as time frames for examining declines; the importance of the magnitude and frequency of fluctuations as factors affecting risk of extinction; and the overall utility of numeric thresh-olds or guidelines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From 1947 to 1973, the U.S.S.R. conducted a huge campaign of illegal whaling worldwide. We review Soviet catches of humpback whales, Megaptera novaeangliae, in the Southern Ocean during this period, with an emphasis on the International Whaling Commission’s Antarctic Management Areas IV, V, and VI (the principal regions of illegal Soviet whaling on this species, south of Australia and western Oceania). Where possible, we summarize legal and illegal Soviet catches by year, Management Area, and factory fleet, and also include information on takes by other nations. Soviet humpback catches between 1947 and 1973 totaled 48,702 and break down as follows: 649 (Area I), 1,412 (Area II), 921 (Area III), 8,779 (Area IV), 22,569 (Area V), and 7,195 (Area VI), with 7,177 catches not currently assignable to area. In all, at least 72,542 humpback whales were killed by all operations (Soviet plus other nations) after World War II in Areas IV (27,201), V (38,146), and VI (7,195). More than one-third of these (25,474 whales, of which 25,192 came from Areas V and VI) were taken in just two seasons, 1959–60 and 1960–61. The impact of these takes, and of those from Area IV in the late 1950’s, is evident in the sometimes dramatic declines in catches at shore stations in Australia, New Zealand, and at Norfolk Island. When compared to recent estimates of abundance and initial population size, the large removals from Areas IV and V indicate that the populations in these regions remain well below pre-exploitation levels despite reported strong growth rates off eastern and western Australia. Populations in many areas of Oceania continue to be small, indicating that the catches from Area VI and eastern Area V had long-term impacts on recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): A selective but nontheless real record of phytoplankton activity over the Santa Barbara Basin can be obtained from the underlying varved sediments. The phytoplankton groups preserved are: diatoms (frustrules and spores), silicoflagellates, dinoflagellates (cysts) and coccoliths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding recolonization processes of intertidal fish assemblages is integral for predicting the consequences of significant natural or anthropogenic impacts on the intertidal zone. Recolonization of experimentally defaunated intertidal rockpools by fishes at Bass Point, New South Wales (NSW), Australia, was assessed quantitatively by using one long-term and two short-term studies. Rockpools of similar size and position at four sites within the intertidal zone were repeatedly defaunated of their fish fauna after one week, one month, and three months during two shortterm studies in spring and autumn (5 months each), and every six months for the long-term study (12 months). Fish assemblages were highly resilient to experimental perturbations—recolonizing to initial fish assemblage structure within 1−3 months. This recolonization was primarily due to subadults (30−40 mm TL) and adults (>40 mm TL) moving in from adjacent rockpools and presumably to abundant species competing for access to vacant habitat. The main recolonizers were those species found in highest numbers in initial samples, such as Bathygobius cocosensis, Enneapterygius rufopileus, and Girella elevata. Defaunation did not affect the size composition of fishes, except during autumn and winter when juveniles (<30 mm TL) recruited to rockpools. It appears that Bass Point rockpool fish assemblages are largely controlled by postrecruitment density-dependent mechanisms that indicate that recolonization may be driven by deterministic mechanisms.