23 resultados para Pathogens

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salvinia molesta D. S. Mitchell (Salviniaceae), variously called giant salvinia, water fern or African payal, is a vegetatively reproducing, perennial, free-floating, aquatic weed, native to southeastern Brazil (Waterhouse and Norris 1987). It (hereafter called salvinia) is a very serious weed in most regions outside its native range (Harley and Mitchell 1981) including India. The purpose of this paper is to report on two fungal pathogens that were found to be the cause of a sudden decline in salvinia in Bangalore.(PDF has 4 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any presence of bacterial human pathogen in shrimp products may be of public health concern. This note concludes that Salmonella do not appear to constitute a part of the microbial flora where shrimp culture is practiced in Thailand. Vibrio cholerae 01, the cause of cholera are rarely recovered from the environment with no isolates containing genes encoding cholera toxin. Further studies are needed to describe the prevalence of bacterial human pathogens in shrimp culture, especially determination of possible postharvest cross-contamnation with these pathogens

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several microorganisms have been identified as pathogenic agents responsible for various outbreaks of coral disease. Little has been learned about the exclusivity of a pathogen to given disease signs. Most pathogens have only been implicated within a subset of corals, leaving gaps in our knowledge of the host range and geographic extent of a given pathogen. PCR-based assays provide a rapid and inexpensive route for detection of pathogens. Pathogen-specific 16S rDNA primer sets were designed to target four identified coral pathogens: Aurantimonas coralicida, Serratia marcescens, Vibrio shilonii, and Vibrio coralliilyticus. Assays detected the presence of targets at concentrations of less than one cell per microliter. The assay was applied to 142 coral samples from the Florida Keys, Puerto Rico, and U.S. Virgin Islands as an in situ specificity test. Assays displayed a high-level of specificity, seemingly limited only by the resolution of the 16S rDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the four most destructive shrimp pathogens, such as MBV, the monodon baculovisrus, IHHNV, the infectious hypodermal and hematopoietic necrosis virus, Vibrio harveyi, the luminous bacteria, and WSBV, the white spot syndrome-associated baculovirus. The effects, detection method and treatment for the four pathogens were also briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health and continued existence of coral reef ecosystems are threatened by an increasing array of environmental and anthropogenic impacts. Coral disease is one of the prominent causes of increased mortality among reefs globally, particularly in the Caribbean. Although over 40 different coral diseases and syndromes have been reported worldwide, only a few etiological agents have been confirmed; most pathogens remain unknown and the dynamics of disease transmission, pathogenicity and mortality are not understood. Causal relationships have been documented for only a few of the coral diseases, while new syndromes continue to emerge. Extensive field observations by coral biologists have provided substantial documentation of a plethora of new pathologies, but our understanding, however, has been limited to descriptions of gross lesions with names reflecting these observations (e.g., black band, white band, dark spot). To determine etiology, we must equip coral diseases scientists with basic biomedical knowledge and specialized training in areas such as histology, cell biology and pathology. Only through combining descriptive science with mechanistic science and employing the synthesis epizootiology provides will we be able to gain insight into causation and become equipped to handle the pending crisis. One of the critical challenges faced by coral disease researchers is to establish a framework to systematically study coral pathologies drawing from the field of diagnostic medicine and pathology and using generally accepted nomenclature. This process began in April 2004, with a workshop titled Coral Disease and Health Workshop: Developing Diagnostic Criteria co-convened by the Coral Disease and Health Consortium (CDHC), a working group organized under the auspices of the U.S. Coral Reef Task Force, and the International Registry for Coral Pathology (IRCP). The workshop was hosted by the U.S. Geological Survey, National Wildlife Health Center (NWHC) in Madison, Wisconsin and was focused on gross morphology and disease signs observed in the field. A resounding recommendation from the histopathologists participating in the workshop was the urgent need to develop diagnostic criteria that are suitable to move from gross observations to morphological diagnoses based on evaluation of microscopic anatomy. (PDF contains 92 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was conducted into the deaths of more than 220 bottlenose dolphins (Tursiops truncatus) that occurred within the coastal bay ecosystem of mid-Texas between January and May 1992. The high mortality rate was unusual in that it was limited to a relatively small geographical area, occurred primarily within an inshore bay system separated from the Gulf of Mexico by barrier islands, and coincided with deaths of other taxa including birds and fish. Factors examined to determine the potential causes of the dolphin mortalities included microbial pathogens, natural biotoxins, industrial pollutants, other environmental contaminants, and direct human interactions. Emphasis was placed on nonpoint source pesticide runoff from agricultural areas, which had resulted from record rainfall that occurred during the period of increased mortality. Analytical results from sediment, water, and biota indicated that biotoxins, trace metals, and industrial chemical contamination were not likely causative factors in this mortality event. Elevated concentrations of pesticides (atrazine and aldicarb) were detected in surface water samples from bays within the region, and bay salinities were reduced to <10 ppt from December 1991 through April 1992 due to record rainfall and freshwater runoff exceeding any levels since 1939. Prolonged exposure to low salinity could have played a significant role in the unusual mortalities because low salinity exposure may cause disruption of the permeability barrier in dolphin skin. The lack of established toxicity data for marine mammals, particularly dermal absorption and bioaccumulation, precludes accurate toxicological interpretation of results beyond a simple comparison to terrestrial mammalian models. Results clearly indicated that significant periods of agricultural runoff and accompanying low salinities co-occurred with the unusual mortality event in Texas, but no definitive cause of the mortalities was determined. (PDF file contains 25 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals firstly with the identification and characteristics of fungal pathogens that colonize salmonids and then considers the relative importance of the condition of the host fish and the environmental factors which may influence the interaction between pathogen and host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of molecular biology has had a dramatic impact on all aspects of biology, not least applied microbial ecology. Microbiological testing of water has traditionally depended largely on culture techniques. Growing understanding that only a small proportion of microbial species are culturable, and that many microorganisms may attain a viable but non-culturable state, has promoted the development of novel approaches to monitoring pathogens in the environment. This has been paralleled by an increased awareness of the surprising genetic diversity of natural microbial populations. By targeting gene sequences that are specific for particular microorganisms, for example genes that encode diagnostic enzymes, or species-specific domains of conserved genes such as 16S ribosomal RNA coding sequences (rrn genes), the problems of culture can be avoided. Technical developments, notably in the area of in vitro amplification of DNA using the polymerase chain reaction (PCR), now permit routine detection and identification of specific microorganisms, even when present in very low numbers. Although the techniques of molecular biology have provided some very powerful tools for environmental microbiology, it should not be forgotten that these have their own drawbacks and biases in sampling. For example, molecular techniques are dependent on efficient lysis and recovery of nucleic acids from both vegetative forms and spores of microbial species that may differ radically when growing in the laboratory compared with the natural environment. Furthermore, PCR amplification can introduce its own bias depending on the nature of the oligonucleotide primers utilised. However, despite these potential caveats, it seems likely that a molecular biological approach, particularly with its potential for automation, will provide the mainstay of diagnostic technology for the foreseeable future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely recognised that conventional culture techniques may underestimate true viable bacterial numbers by several orders of magnitude. The basis of this discrepancy is that a culture in or on media of high nutrient concentration is highly selective (either through ”nutrient shock” or failure to provide vital co-factors) and decreases apparent diversity; thus it is unrepresentative of the natural community. In addition, the non-culturable but viable state (NCBV) is a strategy adopted by some bacteria as a response to environmental stress. The basis for the non-culturable state is that cells placed in conditions present in the environment cannot be recultured but can be shown to maintain their viability. Consequently, these cells would not be detected by standard water quality techniques that are based on culture. In the case of pathogens, it may explain outbreaks of disease in populations that have not come into contact with the pathogen. However, the NCBV state is difficult to attribute, due to the failure to distinguish between NCBV and non-viable cells. This article will describe experiences with the fish pathogen Aeromonas salmonicida subsp. salmonicida and the application of molecular techniques for its detection and physiological analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of antibiotics and other chemicals in controlling shrimp pathogens become ineffective as the strains grow more resistant to these chemicals. Moreover, the bacterial pathogen (Vibrio harveyi) produced biofilm coating that protects it from dying and disinfection procedures that are followed during pond preparation. Biological control is being considered as an alternative means of preventing shrimp disease outbreak. The main principle behind biological control is to enhance the growth of beneficial microorganisms which serve as antagonists or target pathogens. The paper discusses shrimp and tilapia crop rotation as a form of effective biological control, a technique which is already being practiced in Indonesia and the Philippines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of various human pathogenic bacteria in commercially available and home-made shrimp feeds used on some farms in India was analyzed. The Total Heterotrophic Bacteria in the commercial feed samples ranged between 103–105 cfu g-1 and those in the farm-made feeds between 106-107 cfu g-1. No bacteria of significance to human health were found to be associated with any of the commercial feed samples analyzed, while farm-made feeds analyzed during the study showed a high incidence of various human pathogens such as Vibrio parahaemolyticus, V. cholerae, Escherichia coli and Staphylococcus aureus. Possible modes of contamination in feeds and ways to prevent them are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibriosis caused by opportunistic and secondary bacterial pathogens is still a serious disease problem in aquaculture of the black tiger shrimp Penaeus monodon. Attempts were made for controlling shrimp bacterial disease using Marine Secondary Metabolites (MSMs). Findings indicated that the MSMs of seaweed Ulva fasciata and Dendrilla nigra are effective for controlling shrimp bacterial pathogens.