9 resultados para Part-Time Work
em Aquatic Commons
Resumo:
The Egyptian aquaculture industry provides more than 100,000 full-time or part-time jobs and produces the country’s least-expensive farmed animal protein. Thus, aquaculture plays an important role in both sustaining livelihoods and improving the diet quality and nutritional health of Egyptians, including a significant proportion of the 25.5% who are resource-poor. Recognizing this dual role, WorldFish has promoted sustainable growth in Egyptian aquaculture for more than 20 years. Through its work, WorldFish has identified a lack of quality data about fish consumption preferences and practices. Eager to fill this knowledge gap, WorldFish partnered with the Environment and Development Group (EDG) to study consumption of fish, red meat and poultry among the resource-poor in Egypt. This study aimed to characterize current consumer preferences for and consumption patterns of animal-source foods, comparing red meat, poultry and fish. The resulting data is meant to contribute to a better understanding of what drives demand for fish among the resource-poor in Egypt, allowing value chain actors to more successfully market their products to this segment of the population.
Resumo:
Over 100 molluscan species are landed in Mexico. About 30% are harvested on the Pacific coast and 70% on the Atlantic coast. Clams, scallops, and squid predominate on the Pacific coast (abalone, limpets, and mussels are landed there exclusively). Conchs and oysters predominate on the Atlantic coast. In 1988, some 95,000 metric tons (t) of mollusks were landed, with a value of $33 million. Mollusks were used extensively in prehispanic Mexico as food, tools, and jewelry. Their use as food and jewelry continues. Except in the States of Baja California and Baja California Sur, where abalone, clams, and scallops provide fishermen with year-round employment, mollusk fishing is done part time. On both the Pacific and Atlantic coasts, many fishermen are nomads, harvesting mollusks wherever they find abundant stocks. Upon finding such beds, they build camps, begin harvesting, and continue until the mollusks become so scarce that it no longer pays to continue. They then look for productive beds in other areas and rebuild their camps. Fishermen harvest abalones, mussels, scallops, and clams by free-diving and using scuba and hooka. Landings of clams and cockles have been growing, and 22,000 t were landed in 1988. Fishermen harvest intertidal clams by hand at wading depths, finding them with their feet. In waters up to 5 m, they harvest them by free-diving. In deeper water, they use scuba and hooka. Many species of gastropods have commercial importance on both coasts. All species with a large detachable muscle are sold as scallops. On the Pacific coast, hatchery culture of oysters prevails. Oyster culture in Atlantic coast lagoons began in the 1950's, when beds were enhanced by spreading shells as cultch for spat. (PDF file contains 228 pages.)
Resumo:
Fish production from Nigeria comes mainly from 3 sources, namely - artisans engaged in either part-time or full-time fishing, commercial trawlers fishing in inshore and offshore waters, and fish farming in enclosures (ponds, tanks and raceways). An account is given of the current situation in Nigeria, considering over exploitation of fish, the fish's environment, fish utilization, and fish marketing
Resumo:
This paper examined the environmental hazards limiting sustainable small-scale fisheries development in Nigeria. Observation has showed that hazards range from pollution of the aquatic habitats by domestic and urban sewage and garbage, agro-chemicals, industrial pollutants, crude oil spillage etc. In an attempt to maximize catch, many migrant and part-time fisher folks indulge in highly destructive and obnoxious fishing practices with adverse impact on fisheries resources. These have constituted significant environmental hazards. Discharges of waste from aquacultural practices in to rivers and lakes have also been identified as sources of environmental hazards. Some aquatic weeds such as water hyacinth are sources of hazards. The effects of environmental hazards on small-scale fisheries resources may be direct arising from the toxicity of pollutants or indirect as a result of ecosystem modification. Some of the effects of pollutants on the aquatic environment and fish have been discussed in the paper
Resumo:
The Southern Florida Shallow-water Coral Ecosystem Mapping Implementation Plan (MIP) discusses the need to produce shallow-water (~0-40 m; 0-22 fm) benthic habitat and bathymetric maps of critical areas in southern Florida and moderate-depth (~40-200 m; 22 -109 fm) bathymetric maps for all of Florida. The ~0-40 m depth regime generally represents where most hermatypic coral species are found and where most direct impacts from pollution and coastal development occur. The plan was developed with extensive input from over 90 representatives of state regulatory and management agencies, federal agencies, universities, and non-governmental organizations involved in the conservation and management of Florida’s coral ecosystems. Southern Florida’s coral ecosystems are extensive. They extend from the Dry Tortugas in the Florida Keys as far north as St Lucie Inlet on the Atlantic Ocean coast and Tarpon Springs on the Gulf of Mexico coast. Using 10 fm (18 m) depth curves on nautical charts as a guide, southern Florida has as much as 84 percent (30,801 sq km) of 36,812 sq km of potential shallow-water (<10 fm; <18 m) coral ecosystems the tropical and subtropical U.S. Moreover, southern Florida’s coral ecosystems contribute greatly to the regional economy. Coral ecosystem-related expenditures generated $4.4 billion in sales, income, and employment and created over 70,000 full-time and part-time jobs in the region during the recent 12-month periods when surveys were conducted.
Resumo:
Aquaculture in Tanzania is still on a subsistence level and most of the ponds are maintained as part time job. The ponds are too small, shallow and over crowded with stunted Tilapia spp. In the present paper the results of experiments conducted in ponds at Nyegezi with T. esculenta and T. zillii are presented. This was part of an overall project of developing techniques of fish cultures with Tilapia under the limited existing conditions at Nyegezi. In a mono - species culture experiement with Tilapia zillii in nine month's time an average size of 172.8 mm/115.0 g was attained. In another experiment with T. zillii and T. esculenta in thirteen month's time, T. zillii attained an average size of 180.2mm/106.6 g and T. esculenta 193.6 mm/118.8 g. In another experiment with intensive feeding schedule an average size of 179.3 mm/126.6 g was attained by T. zillii and 191.0 mm/125.0 g by T. esculenta in four month's time. A locally prepared supplimentary feed with local Brewery Waste and Fish Meal (10:1) was readily accepted by both species of Tilapia. T. zillii voraciously fed on Cabbage leaves, Cauliflower leaves, Chinese cabbage leaves, Cassava leaves and on the common weed Comalina sp. Though all the items mentioned above were readily accepted by T. zillii feeding with Comaltna sp. was the easiest and most convenient because of its availability. In an intensive feeding experiment with vegetable leaves/Comalina sp. and the locally prepared supplimentary feed the fishes attained table size in four months time. Cement cistens of 5 X 3 X 1½ m size could be conveniently used for breeding both species of Tilapia. T. zillii had semi adhesive eggs and they were deposited on the sides of the cement wall. The number of young ones in a brood ranged from 160 to 314 in T. esculenta and 687 to 4,356 in T. zillii.
Resumo:
This work reflects the activities of line and trap fishing in Southern Mozambique in 2000. The catch in line fishing has been estimated at 441 mt, according to the DNAP records. The same sources indicated that 1767 days were spent at sea and the estimated catch rate was 250 Kg per boaticlay. Most of the line fishing effort shifted away from Maputo and moved to Inhambane region. The monthly analysis of fishing vessels, stricter controls over catch and effort data submission, development of long-term research programme and the continuation of the on board sampling to improve the data collection are the recommendation for line fishing. The catch of trap vessels increases from 30mt in 1997 to 172 mt in 2000, during which the total number of traps increased from 25 to 300. During this time the number of fishing days has remained relatively constant, as well the soak time. These data sets are thus not compatible with each other, reflecting an increase in daily catch from 243 Kg to 791 kg. The species composition is mainly dominated by P. coeruleopunctatus, C. puniceus, C. nufar and E. andersoni.
Resumo:
This work refers to the same biological aspects of Chrysoblephus puniceus (marreco), Polysteganus coeruleopunctatus (cachucho) and Cheimerus nufar (robalo). It shows the progress in the biological study of the three species, pointing out at the same time the few discrepancies, which still need to be resolved.
Resumo:
Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.