10 resultados para Pan-American treaties and conventions.
em Aquatic Commons
Resumo:
To assess the potential for monoecious hydrilla ( Hydrilla verticillata (L.f.) Royle) to invade existing aquatic plant communities, monoecious hydrilla was grown in mixtures with American pondweed ( Potamogeton nodosus Poiret). When grown with hydrilla from axillary turions, American pondweed was a stronger competitor. When grown with hydrilla from tubers, American pondweed was equally as strong a competitor as hydrilla.
Resumo:
The distribution, abundance, and length composition of marine finfish, lobster, and squid in Long Island Sound were examined relative to season and physical features of the Sound, using Connecticut Department of Environmental Protection trawl survey data collected from 1984 to 1994. The following are presented: seasonal distribution maps for 59 species, abundance indices for 41 species, and length frequencies for 26 species. In addition, a broader view of habitat utilization in the Sound was examined by mapping aggregated catches (total catch per tow, demersal catch per tow, and pelagic catch per tow) and by comparing species richness and mean aggregate catch/tow by analysis of variance (ANOVA) among eight habitat types defined by depth interval and bottom type. For many individual species, seasonal migration patterns and preference for particular areas within Long Island Sound were evident. The aggregate distribution maps show that overall abundance was lower in the eastern Sound than the central and western portions. Demersal and pelagic temporal abundance show opposite trends—demersals were abundant in spring and declined through summer and fall, whereas pelagic abundance was low in spring and increased into fall. The analysis of habitat types revealed significant differences for both species richness and mean catch per tow. Generally, species richness was highest in habitats within the central area of the Sound and lowest in eastern habitats. The aggregate mean catch was highest in the western and central habitats, and declined eastward. (PDF file contains 199 pages.)
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
The extreme phases of the Southern Oscillation (SO) have been linked to fairly persistent classes of circulation anomalies over the North Pacific and parts of North America. It has been more difficult to uncover correspondingly consistent patterns of surface temperature and precipitation over much of the continent. The few regions that appear to have consistent SO-related patterns of temperature and precipitation anomalies are identified and discussed. Also discussed are regions that appear to have strong SO-related surface anomalies whose sign varies from episode to episode.
Resumo:
This study investigates the extent of the affect [sic] of the El Niño/Southern Oscillation on South American streamflow. The response of South American precipitation and temperature to the extreme phases of ENSO (El Niño and La Niña events) is well documented; but the response of South American hydrology has been barely studied. Such paucity of research contrasts sharply with that available on the response of North American streamflow to ENSO events.
Resumo:
The United States' increasing competitive advantage in international seafood trade in Alaska walleye pollock. Theragra chalcogramma, has contributed to higher prices for surimi-based goods and structural changes in seafood production and trade in Japan. The objectives of this analytical investigation include: 1) Evaluation of the role reversal of Japan and the United States in international seafood trade and 2) quantification of the impact of rising prices of frozen surimi on household consumption of surimi-based foods in Japan. This study documents Japan's regression from "seafood self-sufficiency" to increasing dependence on imported products and raw materials. In particular, Japan's growing dependence on American fishermen and seafood producers is described. Surimi production by the United States, and its emerging dominance over Japanese sources of supply, are especially significant. Results of the analysis suggest that Japanese consumer demand for surimi-based food stuffs correlates directly with "competitive" food prices, e.g., pork, chicken, and beef, and inversely with personal income. Also revealed is how rising household income and relative price shifts among competing animal protein sources in the Japanese diet have contributed to declining household consumption of surimi-based foods, specifically, and a shift away from seafoods in favor of beef, in general. The linkages between, for example. Japanese domestic seafood production and consumption, international trade in marine products, and resource management decisions in the U.S. EEZ present a picture of a changing global marketplace. Increasingly, actions in one arena will have perhaps profound implications in the others.
Resumo:
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
Resumo:
This report provides baseline biological data on fishes, corals and habitats in Coral and Fish Bays, St. John, USVI. A similar report with data on nutrients and contaminants in the same bays is planned to be completed in 2013. Data from NOAA’s long-term Caribbean Coral Reef Ecosystem Monitoring program was compiled to provide a baseline assessment of corals, fishes and habitats from 2001 to 2010, data needed to assess the impacts of erosion control projects installed from 2010 to 2011. The baseline data supplement other information collected as part of the USVI Watershed Stabilization Project, a project funded by the American Recovery and Reinvestment Act of 2009 and distributed through the NOAA Restoration Center, but uses data which is not within the scope of ARRA funded work. We present data on 16 ecological indicators of fishes, corals and habitats. These indicators were chosen because of their sensitivity to changes in water quality noted in the scientific literature (e.g., Rogers 1990, Larsen and Webb 2009). We report long-term averages and corresponding standard errors, plot annual averages, map indicator values and list inventories of coral and fish species identified among surveys. Similar data will be needed in the future to make rigorous comparisons and determine the magnitude of any impacts from watershed stabilization.