4 resultados para PTERIDOPHYTE SPORES

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In June 1994 and 1995 stations in the North, Irish, Celtic Seas and the Channel were studied for the occurrence of Myxobolus aeglefini in whiting (Merlangius merlangus). The disease was visible externally as either white nodules of a few millimeters diameter in the upper mouth cavity, gill arches and the basis of pelvic fins and in severe cases also on the lower jaws or in the cornea and sclera of the eye. It was verified morphometrically in histological sections of infected eyes by size and shape of spores. Myxobolus aeglefini was present in low prevalences at two North Sea stations and high prevalences of up to 49 % in the Irish Sea (Solway Firth) during both cruises. Whiting between 23 and 55 cm were found to be infected. Neither length-age prevalences nor condition factors and gonado, spleen, liver somatic indices differed in diseased and healthy fishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a lake the nitrogen compounds are liable to regular cycling in which nitrate is reduced and ammonium oxidised. As a nitrate maximum is regularly established in the upper part of the hypolimnion of a stratified summer lake, the authors have dealt in particular with the oxidising side of the nitrogen cycle. Described here are partial results of the nitrification in Plusssee. The Plusssee was chosen, since it is almost entirely without inflows, and, lying in a wooded basin, is well protected from the wind, and therefore stably stratified. In order to determine the number of autotrophic nitrificants the distribution of the Nitrosomonas and Nitrobacter spores in the lake were analysed. From the estimates on the determination of spore numbers of the heterotrophic nitrificants, 14 species in the pure culture were isolated and examined from morphological, biochemical and taxonomic viewpoints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of molecular biology has had a dramatic impact on all aspects of biology, not least applied microbial ecology. Microbiological testing of water has traditionally depended largely on culture techniques. Growing understanding that only a small proportion of microbial species are culturable, and that many microorganisms may attain a viable but non-culturable state, has promoted the development of novel approaches to monitoring pathogens in the environment. This has been paralleled by an increased awareness of the surprising genetic diversity of natural microbial populations. By targeting gene sequences that are specific for particular microorganisms, for example genes that encode diagnostic enzymes, or species-specific domains of conserved genes such as 16S ribosomal RNA coding sequences (rrn genes), the problems of culture can be avoided. Technical developments, notably in the area of in vitro amplification of DNA using the polymerase chain reaction (PCR), now permit routine detection and identification of specific microorganisms, even when present in very low numbers. Although the techniques of molecular biology have provided some very powerful tools for environmental microbiology, it should not be forgotten that these have their own drawbacks and biases in sampling. For example, molecular techniques are dependent on efficient lysis and recovery of nucleic acids from both vegetative forms and spores of microbial species that may differ radically when growing in the laboratory compared with the natural environment. Furthermore, PCR amplification can introduce its own bias depending on the nature of the oligonucleotide primers utilised. However, despite these potential caveats, it seems likely that a molecular biological approach, particularly with its potential for automation, will provide the mainstay of diagnostic technology for the foreseeable future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): A selective but nontheless real record of phytoplankton activity over the Santa Barbara Basin can be obtained from the underlying varved sediments. The phytoplankton groups preserved are: diatoms (frustrules and spores), silicoflagellates, dinoflagellates (cysts) and coccoliths.