3 resultados para PRL PULSES
em Aquatic Commons
Resumo:
Mid-frequency active (MFA) sonar emits pulses of sound from an underwater transmitter to help determine the size, distance, and speed of objects. The sound waves bounce off objects and reflect back to underwater acoustic receivers as an echo. MFA sonar has been used since World War II, and the Navy indicates it is the only reliable way to track submarines, especially more recently designed submarines that operate more quietly, making them more difficult to detect. Scientists have asserted that sonar may harm certain marine mammals under certain conditions, especially beaked whales. Depending on the exposure, they believe that sonar may damage the ears of the mammals, causing hemorrhaging and/or disorientation. The Navy agrees that the sonar may harm some marine mammals, but says it has taken protective measures so that animals are not harmed. MFA training must comply with a variety of environmental laws, unless an exemption is granted by the appropriate authority. Marine mammals are protected under the Marine Mammal Protection Act (MMPA) and some under the Endangered Species Act (ESA). The training program must also comply with the National Environmental Policy Act (NEPA), and in some cases the Coastal Zone Management Act (CZMA). Each of these laws provides some exemption for certain federal actions. The Navy has invoked all of the exemptions to continue its sonar training exercises. Litigation challenging the MFA training off the coast of Southern California ended with a November 2008 U.S. Supreme Court decision. The Supreme Court said that the lower court had improperly favored the possibility of injuring marine animals over the importance of military readiness. The Supreme Court’s ruling allowed the training to continue without the limitations imposed on it by other courts. (pdf contains 20pp.)
Resumo:
As part of an ongoing program of benthic sampling and related assessments of sediment quality at Gray’s Reef National Marine Sanctuary (GRNMS) off the coast of Georgia, a survey of soft-bottom benthic habitats was conducted in spring 2005 to characterize condition of macroinfaunal assemblages and levels of chemical contaminants in sediments and biota relative to a baseline survey carried out in spring 2000. Distribution and abundance of macrobenthos were related foremost to sediment type (median particle size, % gravel), which in turn varied according to bottom-habitat mesoscale features (e.g., association with live bottom versus flat or rippled sand areas). Overall abundance and diversity of soft-bottom benthic communities were similar between the two years, though dominance patterns and relative abundances of component species were less repeatable. Seasonal summer pulses of a few taxa (e.g., the bivalve Ervilia sp. A) observed in 2000 were not observed in 2005. Concentrations of chemical contaminants in sediments and biota, though detectable in both years, were consistently at low, background levels and no exceedances of sediment probable bioeffect levels or FDA action levels for edible fish or shellfish were observed. Near-bottom dissolved oxygen levels and organic-matter content of sediments also have remained within normal ranges. Highly diverse benthic assemblages were found in both years, supporting the premise that GRNMS serves as an important reservoir of marine biodiversity. A total of 353 taxa (219 identified to species) were collected during the spring 2005 survey. Cumulatively, 588 taxa (371 identified to species) have been recorded in the sanctuary from surveys in 2000, 2001, 2002, and 2005. Species Accumulation Curves indicate that the theoretical maximum should be in excess of 600 species. Results of this study will be of value in advancing strategic science and management goals for GRNMS, including characterization and long-term monitoring of sanctuary resources and processes, as well as supporting evolving interests in ecosystem-based management of the surrounding South Atlantic Bight (SAB) ecosystem. (PDF contains 46 pages)
Resumo:
Mid-frequency active (MFA) sonar emits pulses of sound from an underwater transmitter to help determine the size, distance, and speed of objects. The sound waves bounce off objects and reflect back to underwater acoustic receivers as an echo. MFA sonar has been used since World War II, and the Navy indicates it is the only reliable way to track submarines, especially more recently designed submarines that operate more quietly, making them more difficult to detect. Scientists have asserted that sonar may harm certain marine mammals under certain conditions, especially beaked whales. Depending on the exposure, they believe that sonar may damage the ears of the mammals, causing hemorrhaging and/or disorientation. The Navy agrees that the sonar may harm some marine mammals, but says it has taken protective measures so that animals are not harmed. (PDF contains 20 pages)