4 resultados para PLANET
em Aquatic Commons
Resumo:
Buildings in Port Aransas encounter drastic environmental challenges: the potential catastrophic storm surge and high winds from a hurricane, and daily conditions hostile to buildings, vehicles, and even most vegetation. Its location a few hundred feet from the Gulf of Mexico and near-tropical latitude expose buildings to continuous high humidity, winds laden with scouring sand and corrosive salt, and extremes of temperature and ultraviolet light. Building construction methods are able to address each of these, but doing so in a sustainable way creates significant challenges. The new research building at the Marine Science Institute has been designed and is being constructed to meet the demand for both survivability and sustainability. It is tracking towards formal certification as a LEED Gold structure while being robust and resistant to the harsh coastal environment. The effects of a hurricane are mitigated by elevating buildings and providing a windproof envelope. Ground-level enclosures are designed to be sacrificial and non-structural so they can wash or blow away without imposing damage on the upper portions of the building, and only non-critical functions and equipment will be supported within them. Design features that integrate survivability with sustainability include: orientation of building axis; integral shading from direct summer sunlight; light wells; photovoltaic arrays; collection of rainwater and air conditioning condensate for use in landscape irrigation; reduced impervious cover; xeriscaping and indigenous plants; recycling of waste heat from air conditioning systems; roofing system that reflects light and heat; long life, low maintenance stainless steel, high-tensile vinyl, hard-anodized aluminum and hot-dipped galvanized mountings throughout; chloride-resistant concrete; reduced visual impact; recycling of construction materials.
Resumo:
Seagrass ecosystems are protected under the federal "no-net-loss" policy for wetlands and form one of the most productive plant communities on the planet, performing important ecological functions. Seagrass beds have been recognized as a valuable resource critical to the health and function of coastal waters. Greater awareness and public education, however, is essential for conservation of this resource. Tremendous losses of this habitat have occurred as a result of development within the coastal zone. Disturbances usually kill seagrasses rapidly, and recovery is often comparatively slow. Mitigation to compensate for destruction of existing habitat usually follows when the agent of loss and responsible party are known. Compensation assumes that ecosystems can be made to order and, in essence, trades existing functional habitat for the promise of replacement habitat. While ~lant ingse agrass is not technically complex, there is no easy way to meet the goal of maintaining or increasing seagrass acreage. Rather, the entire process of planning, planting and monitoring requires attention to detail and does not lend itself to oversimplification.
Resumo:
Situated as it is on the north-western section of the Indian Ocean, the Cochin littoral has played a very significant role in the history of India. Despite being an extremely interesting region from the point of view of oceanographic studies, the Indian Ocean in general has been one of the least scientifically known regions of our planet.
Resumo:
The marine environment covers three quarters of the surface of the planet is estimated to be home to more than 80% of life and yet it remains largely unexplored. The rich diversity of marine flora and fauna and its adaptation to the harsh marine environment coupled with new developments in biotechnology, has opened up a new exciting vista for extraction of bioactive products of use in medicine. In this study inhibitory activity of a marine bacterium isolated from gut of ribbonfish was studied against pathogenic and environmental isolates of Vibrio species. This strain was identified as Pseudomonas stutzeri and it was found active against V. harveyi (luminescent bacteria), V. cholerae, V. alginolyticus, V. damseal, V. fluvialis. The antibacterial substance produced by Pseudomonas stutzeri was soluble in organic solvent and closely bound to external surface of bacterial cells. Reduction of the absorbance of the V. cholera cell suspension was observed when log phase cells of V. cholerae were treated with MIC and 4xMIC concentration of crude extract of Pseudomonas stutzeri.