7 resultados para PERFORATED VESICLE
em Aquatic Commons
Resumo:
Hydrilla (Hydrilla verticillata (L.f.)Royle), a serious aquatic weed, reproduces through formation of underground tubers. To date, attacking this life-cycle stage has been problematic. The purpose of this study was to measure the impact of exposure to dilute acetic acid on monoecious hydrilla tubers under field conditions. In this field experiment, treatments were acetic acid concentration (0, 2.5, or 5%) and sediment condition (perforated or not perforated). Each of 60, 1x1 m plots (in the Oregon House Canal) were randomly assigned to one treatment. Two weeks after treatment, we collected three samples from each plot. One was washed over 2 mm wire mesh screens to separate tubers from sediment. Relative electrolyte leakage was measured for one tuber from each plot. Five additional tubers from each plot were placed in a growth chamber and sprouting monitored for four weeks. A second sample from each plot was placed in a plastic tub and placed in an outdoor tank, filled with water. These samples were monitored for tuber sprouting. Relative electrolyte leakage increased significantly for tubers exposed to 2.5% or 5% acetic acid. Effects on tubers in perforated sediment were reduced. Exposure to acetic acid inhibited tuber sprouting by 80 to 100%, in both chamber and outdoor tests. These results confirm findings from earlier laboratory/greenhouse experiments, and suggest that this approach may be useful in the management of hydrilla tuber banks in habitats where the water level can be lowered to expose the sediments.
Resumo:
Descriptions of spawning and larval development of Ethmalosa, up to the vitelline vesicle resorption stage, are made from plankton samplings in the Ebrié coastal lagoon and from artificially fertilized eggs. Spawning takes place from November to June in waters with salinities of 18 to 26 parts per thousand, and temperatures of 22.8 to 30.2 degrees, for 13-14 cm long fishes.
Resumo:
This study examines genetic variation at five microsatellite loci and at the vesicle membrane protein locus, pantophysin, of Atlantic cod (Gadus morhua) from Browns Bank, Georges Bank, and Nantucket Shoals. The Nantucket Shoals sample represents the first time cod south of Georges Bank have been genetically evaluated. Heterogeneity of allelic distribution was not observed (P>0.05) between two temporally separated Georges Bank samples indicating potential genetic stability of Georges Bank cod. When Bonferroni corrections (α=0.05, P<0.017) were applied to pairwise measures of population differentiation and estimates of FST, significance was observed between Nantucket Shoals and Georges Bank cod and also between Nantucket Shoals and Browns Bank cod. However, neither significant differentiation nor significant estimates of FST were observed between Georges Bank and the Browns Bank cod. Our research suggests that the cod spawning on Nantucket Shoals are genetically differentiated from cod spawning on Browns Bank and Georges Bank. Managers may wish to consider Nantucket Shoals cod a separate stock for assessment and management purposes in the future.
Resumo:
A new species of trematodes Pleorchis heterorchis is described from the fishes Lutjanus johnii and Otolithus argenteus of Karachi coast. The new species is characterized by having a lanceolate body with a notch at the middle of the posterior end of the body. Body surface is smooth, ventral sucker rounded, situated at the anterior middle region of the body, pre-pharynx is well developed, widened posteriorly, pharynx muscular, oesophagus short, intestine H-shaped with anterior arms much shorter than the posterior, intestinal bifurcation almost in the middle of fore body, anterior caeca wide and short extending as far as anterior limit of pharynx. Posteriorly caeca reach to posterior end of the body with no lateral out pocketing. Testes 44 in number, intercecal arranged in 2 parallel rows, sub-globular, entire to slightly irregular, almost of same sizes extending immediately from posterior of the ovary to anterior of excretory vesicle. Cirrus pouch overlaps the ventral sucker, extends into hind body, terminating above the ovary, containing bipartite seminal vesicle, pars prostatica and ejaculatory duct. Genital pore behind the intestinal bifurcation and pre-acetabular. Ovary pre-testicular, consists of 16 follicles of varying sizes. Vitellaria lateral, follicular, extending from post bifurcal to posterior extremity. Excretory vesicle reaches to the posterior level of last pair of testes.
Resumo:
As the most of the fish resources are known and exploited, protecting their generation is of the greatest importance. Aquaculture is one of the efficient procedures in protecting and reviving fish resources and knowing about the reproductive cycle and gonads development has an important role in approaching this aim. Liza abu belongs to the family Mugilidae that according to its resistance to the environmental condition and its fast growth , can be introduced as a fish with economical value. As there is no scientific data on the reproductive biology of this species , study on the reproductive biology and gonad development is considered as the aim of this research . For this purpose , 360 samples of this species were investigated during the period from February 2007 to January 2008 in Khozestan Province . After studing morphological and histological characteristics of gonad specimen , they were prepared through histological method. Samples were prepared through usual histological method and studied under light microscope. According to the results, the maturity stages of male and female Liza abu were separated to six different successive stages. In ovaries , these stages were as follow : In stage І, the oocytes were small , this stage was observed from July to October . In stage ІІ, considerable growth was observed in the oocytes . This stage was observed from October to January . In stage III, due to vitellogenesis, the maximum growth was observed and three layers of theca, granullosa and follicle cells were visible. This stage was observed during January and February . In stage IV, migration of germinal vesicle was observed and due to hydration of the oocytes , their diameter was increased. The ovaries were yellowish and in maximum size and ovules could be easily observed with naked-eye . This stage was observed in February and March . In stage V, spawning occured. This stage was observed in April . In stage VI, ovaries consisted of immature and atretic oocytes and also empty follicles. This stage was observed in May and June. In testes , these stages were as follow : In stage I , the testes were small in size and contained the spermatogonia which were the only cellular components.This stage was observed in August and September . In stage II (maturing virgin ) , the spermatogonia and the primary spermatocytes were visible. This stage was observed in October . In stage III (developing), intensive spermatogenesis was occured and the primary and the secondary spermatocytes were the most visible cells during this stage .This stage was observed from November to January. In stage IV(developed), cells of all stages of spermatogenesis could be seen but the secondary spermatocytes and spermatids were in large number. This stage was observed from January to March. In stage V , the testes were filled with sperms. This stage was observed in March and April .In stage VI, residual spermatozoa and the spermatogonia were visible in the testes. This stage was observed from May to August. According to cyclic changes in GSI, sexual maturation in breeding begins in January and spawning occurs in April. The ova diameter ranged from 30.75 μ in stage I to 472.19 μ in stage IV. In this study , the sex ratio was 1:2.7, and male and female percentage were 27.02% and 72.98% respectively. This means that females predominate males. In this study absolute fecundity was calculated and changing between 30805.44 to 431247.3 was observed and absolute fecundity was calculated 111275.3 in average.
Resumo:
In this study the process of female gray mullet brooders was carried out by using histological study and masurment of sex steroids. Results of histological studies showed that oocyte of gray mullet brooders in Gomishan Rearing Center conditions of develop to the end of yolk globule stage. The results were observed with oocyte in chromatin nucleolar stage (first stage) with means of diameter of 20 p m, in August, perinucleolar stage (second stage) in September with mean diameter of 87 p m, yolk vesicle stage (third stage) in October with mean diameter 200 p m and yolk granules stage (forth stage) from October to November with average diameter of 180 — 650 p m. For the reason of stopping oocyte develop at the end of fourth stage, hormonal induction to final oocyte maturation and ovulation was used. For this purpose, carp pituitary , HCG and LRH-A2 with different combinations were used in two stages, second injection was used 24 hours after first injection. 15 females brooders were divided in 5 groups, different hormonal combinations were injected to four groups and to fifth group as control, only saline, was injected. The process of female brooder rippening in hormonal induction was studied via masurment of sex steroids including 17 a - hydroxy progestrone, estradio1-17)6 and testosterone. Blood samples were collected from caudal vein during first injection, 24, 30 and 48 hours after the first injection. At the same time, for distinguishing histological changes the sample has been attained from the gonads Sex stroid fluctuation patterns in different brooder groups that injected hormon were similar, however hormonal composition had similar effects. All brooder that their oocyte in the beginning of hormonal injection were At the end of fourth stage with oocyte diameter average of 600 p m received to final maturation and ovulation. The brooder that its oocytes were At the begining or mid-fourth stage did not show ovulation but hormonal induction caused oocyte develop at the beginning of fifth stage. Study of 17-hydroxy progestrone fluctuation showed that the maximum level of this steroid (0.347 ng/ml) measured 30 hours after the first injection and was significantly higher (p< 0.05) than those of control group. So, 17-hydroxy progestrone is probably precursor of maturation inducing steroid (MIS). However the maximum level of that observed was coincident with germinal vesicle breakdown, oil droplets coalescence and dissolution of yolk granuls The maximum levels of esteradiol— 17/0 and testosterone (3.778 and 16.801ng/ml,respectively) in spawned brooders,were observed 24 hours after the first injection. levels of those steroids were significantly higher (p<0.05) than control group. Maximum level of sex steroids in the brooders that did not spawn to the end of treatment was observed with more delay than those in spawned brooders. Therefor maximum level of 17a-hydroxy progestrone (0.264 ng/ml) in those brooders observed in fourth sampling time and the maximum levels of estradio1-17a and testosterone (2.944 and 18.993 ng/ml, respectivly)observed in third sampling time that was significantly higher (p<0.05) than those of control group. For the study of stress effect on brooders during the hormonal induction, level of cortisol was measured in every sampling time. level of cortisol had high fluctuation that showed handling level and stress effect on brooders. However maximum level of cortisol in majority of brooders was dominant in third sampling time that was coincident with final maturation.
Resumo:
Annual cycle of gonad development and spawning in pearl oyster, Pinctada ficata (Gould) in Nakhiloo, Northeast Persian Gulf, was investigated over two years from August 1994 to June 1996. Gonadal condition was assessed by staging criteria to describe gametogenic development from histological preparations of randomly collected individuals of all sizes. A bimodal gametogenic pattern with summer and autumn spawning periods was evident throughout the study. Gametogensis commenced in November-December which proceeded by major gonadal maturation during February-April. Summer spawning was observed from April to July with major spawning at the latter end. During spawning peak in July, low level of gametogensis was noticed. Gametogenic activity was picked up again in August-September which proceeded by autumn spawning from September to December. Towards the end of spawning season, incidence of gonadal inactivation increased. Minimum level of gonadal activity was observed in November. Temperature regime appears to have influential role in regulation of gametogenic and spawning processes. Gonadal development and spawning trends were similar in both sexes. P. radiaata was found to be protandrous hermaphrodite which matured as a male at shell height greater than 20 mm. Biseivality was uncommon and the sex ratio was about 1:1. Ultrastructure of gametes were investigated in the Pictada fucata (Gould). "Auxiliary cells" closely accociated with developing oocytes were observed. Each oocyte seems to be associated with only one secretory cell. which is characterized by an abundant rough endoplasmic reticulum at the onset of vitellogenesis. Contact between this cell and a developing oocytes is maintained by a desmosome-like junction which can be observed when the vitelline coat is formed. these "auxiliary or nursing cells" seem to play a tropic role in vitellogenesis, and may be involved in the formation of the vitelline coat of the oocytes. Oocytic degeneration is observed in this species, it is a continuous phenomenon of varing intensity throughout the year. The ultrastructural changes resulting in lysis of the oocyte are described. Mature spermatozoa consist of a broad, cap-shaped acrosomal vesicle, subacrosomal material, a round nucleus, two triplet substructure centrioles surrounded by four spherical mitochondria, and a flagellum anchored to the distal centriole and plasma membrane. Spermatozoa of Plucata closley resemble to those of other investigated Pteriidae. Changes in proximate composition of soft tissue and gonadal cycle of Pinctada fucata was studied. Mobilization and utilization of stored reserves are apparent during gametogenesis and gonadal maturation. Protein reserves are utilized during spermatogenesis while reserved carbohydrates form the main energy donor in oogenesis. The role of lipid as am.: energy reserve is second to that of carbohydrate.