4 resultados para Oogonia

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the sexual differentiation and reproductive dynamics of striped mullet (Mugil cephalus L.) in the estuaries of South Carolina. A total of 16,464 specimens were captured during the study and histological examination of sex and maturity was performed on a subsample of 3670 fish. Striped mullet were sexually undifferentiated for the first 12 months, began differentiation at 13 months, and were 90% fully differentiated by 15 to 19 months of age and 225 mm total length (TL). The defining morphological characteristics for differentiating males was the elongation of the protogonial germ tissue in a corradiating pattern towards the center of the lobe, the development of primary and secondary ducts, and the lack of any recognizable ovarian wall structure. The defining female characteristics were the formation of protogonial germ tissue into spherical germ cell nests, separation of a tissue layer from the outer epithelial layer of the lobe-forming ovarian walls, a tissue bud growing from the suspensory tissue that helped form the ovary wall, and the proliferation of oogonia and oocytes. Sexual maturation in male striped mullet first occurred at 1 year and 248 mm TL and 100% maturity occurred at age 2 and 300 mm TL. Female striped mullet first matured at 2 years and 291 mm total length and 100% maturity occurred at 400 mm TL and age 4. Because of the open ocean spawning behavior of striped mullet, all stages of maturity were observed in males and females except for functionally mature females with hydrated oocytes. The spawning season for striped mullet recruiting to South Carolina estuaries lasts from October to April; the majority of spawning activity, however, occurs from November to January. Ovarian atresia was observed to have four distinct phases. This study presents morpholog ical analysis of reproductive ontogeny in relation to size and age in South Carolina striped mullet. Because of the length of the undifferentiated gonad stage in juvenile striped mullet, previous studies have proposed the possibility of protandric hermaphrodism in this species. The results of our study indicate that striped mullet are gonochoristic but capable of exhibiting nonfunctional hermaphroditic characteristics in differentiated mature gonads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loligo opalescens live less than a year and die after a short spawning period before all oocytes are expended. Potential fecundity (EP), the standing stock of all oocytes just before the onset of spawning, increased with dorsal mantle length (L), where EP = 29.8L. For the average female squid (L of 129 mm), EP was 3844 oocytes. During the spawning period, no oogonia were produced; therefore the standing stock of oocytes declined as they were ovulated. This decline in oocytes was correlated with a decline in mantle condition and an increase in the size of the smallest oocyte in the ovary. Close agreement between the decline in estimated body weight and standing stock of oocytes during the spawning period indicated that maturation and spawning of eggs could largely, if not entirely, be supported by the conversion of energy reserves in tissue. Loligo opalescens, newly recruited to the spawning population, ovulated about 36% of their potential fecundity during their first spawning day and fewer ova were released in subsequent days. Loligo opalescens do not spawn all of their oocytes; a small percentage of the spawning population may live long enough to spawn 78% of their potential fecundity. Loligo opalescens are taken in a spawning grounds fishery off California, where nearly all of the catch are mature spawning adults. Thirty-three percent of the potential fecundity of L. opalescens was deposited before they were taken by the fishery (December 1998−99). This observation led to the development of a management strategy based on monitoring the escapement of eggs from the fishery. The strategy requires estimation of the fecundity realized by the average squid in the population which is a function of egg deposition and mortality rates. A model indicated that the daily total mortality rate on the spawning ground may be about 0.45 and that the average adult may live only 1.67 days after spawning begins. The rate at which eggs escape the fishery was modeled and the sensitivity of changing daily rates of fishing mortality, natural mortality, and egg deposition was examined. A rapid method for monitoring the fecundity of the L. opalescens catch was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on reproductive biology and artificial propagation including larval rearing of freshwater mud eel, Monopterus cuchia and spiny eel, Mastacembelus armatus were attempted. The gonadosomatic index (GSI) of mud eel ranged from 0.41 (August) to 5.52 (June) in males and 0.53 (August) to 7.61 (June) in females. In both cases the GSI showed a peak in June. Fecundity ranged from 228 (TL - 396 mm; W - 78g) to 5510 (TL - 865 mm; W - 630 g). In case of spiny eel, the GSI varied from 0.65 (August) to 8.30 (July) in males and 0.70 (August) to 10.46 (July) in females. GSI showed single peak in July. Fecundity ranged from 570 (TL - 240 mm; W - 30 g) to 10870 (TL - 601; W - 350g). Histology of the testes and ovaries of the eels were carried out to investigate the gonadal development stages during the reproductive months (August to November 2003). In case of male M. cuchia, the secondary primordial germ cells, primary spermatogonium, some spermatogonia A and clone of spermatogonium B in testis were observed in September. In October-males different sized lobules having spermatogonia, spermatocytes and spermatids were observed. In the ovary of M. cuchia, polygonal shaped oocytes were seen during September. The oogonia were reduced with dense and irregular shaped during October. Numerous pycnotic cells were visible during November. In male M. armatus numerous broken lobule walls were found in testes during September. In October, abundant primary germ cells, pycnotic nests of degenerating cells, spermatogonia and spermatids were observed. In females, ovaries had distinct yolk vesicles stage and yolk granules stages in August. In September, the follicular cells of the oogonia were ruptured, shrunk forming irregular shaped in October. Oogonia were also shrunk with thin, irregular shaped structure but broken parts of the ruptured follicular cells were scattered in case of M. armatus. Experimental attempts on artificial propagation indicated that both freshwater eels were difficult to breed using inducing agents like pituitary glands (PG) of 10, 20, 50, 100 and 150 mg per kg of body weight. Same doses were used for both sexes with equal sex-ratio. In both cases, brood fish died at higher doses of injection given at 100 and 150 mg PG/kg bodyweight. However, M. cuchia breed naturally in cisterns when provided with water hyacinths and tunnel in muddy bottom. M. cuchia fed with chopped cooked fish attained a mean weight of 18.75 ± 2.3 g and cent percent survival. While in case of M. armatus best growth by weight (12.0 ± 2.48 g) and cent percent survival were achieved using chopped raw fish. Car tyre was observed as best shelter for attaining the mean weight gain 22.53 ± 2.24 g and cent percent survival of M. cuchia. While PVC pipe was found to be the best shelter for M. armatus, where it attained the mean weight of 12.73 ± 1.88 g and cent percent survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea cucumbers belong to phylum Echinodermata, order Holothuroidea are an abundant and diverse group of Invertebrates, with over 1400 species occuring from the intertidal to the deepest oceanic trenches. Sea cucumbers are important components of the food chain in temperate and coral reef ecosystems and they play an important role as deposite feeders and suspension feeders. Rapid decline in populations may have serious consequences for the survival of other species that are part of the same complex food web,as the eggs, larve and juveniles constitute an important food source for the other marine species including crustaceans, fish and mollusks. In addition sea cucumbers are often called the earthworms of the sea, because they are responsible for the extensive shifting and mixing of the substrate, and recycling of detrital matter. Sea cucumbers consume and grind sediment and organic material into finer particles , turning over the top layers of sediment in lagoons , reefs and other habitats and allowing the penetration of oxygen. While the taxonomy of the holothurian families is generally well known , the distinction of similar species is difficult. There are relatively few holothurian taxonomist.Most sea cucumber species can be identified by Holothurin taxonomists by using the calcareous skeletal ossicles found in the body wall. In this study , at first a sea cucumber from Kish island in Persian gulf has recognized. Individuals collected from west and east extend far away into north and south of coral reefs by diving. I have checked them morphologically and anatomically.Then with key to the orders of the Holothuroidea, They belong to the Aspidochirotida with key to the families of Aspidochirotida, they were in Stichopodidae families and with key to the genus of Stchopodidae, they were Stichopus. Then ossicles were extracted at National Museum of Natural History, by Dr David Pawson. The ossicles were measured on a transect across a slide prepared from the mid-dorsal region of each specimen.The one we have in the shallow waters of Kish island, is Stichopus hermanni, a massive holothurian, body broad, considerably flattened ventraly ,the dorsal side slightly arched and the lateral sides almost vertical; body wall fairy thick and soft ; mouth subterminal; anus central; tentacles usually 20 in number of length and leaf shaped. Numerous ossicles consisting of table with large discs having usually 7 to 15 peripheral holes, but often irregular or incomplete and spire of moderate height ending in a group of spinelets, rosettes of variable development, and c-shaped rods. Color (exept papillae)partly remained after preservation in alcohol which is found at the depth of 4 to 8 meters, on coral reef. Furthermore, the sexual reproductive cycle was described using standard methods. Gonads were removed and transferred to Bouin's fixative for four weeks and then processed according to standard embedding technique. To prevent the loss of tubule contents during embedding, the tubule sections, were cut well beyond the segment selected for sectioning. For each individual, six sections, each section with 5µm diameter by microtome were cut from tubules. These sections were first placed on gelatin coated slides (the gelatin was heated to 42°c) and then transferred to the oven at 37°c for one hour. This technique usually prevents the fragil tubules from breaking and the loss of gametes. The slides were stained with Eosin and Hematoxylin, and good resolution of the various cell types achieved.A second series of slides was stained with the Periodic Acid Schiff(PAS) to identify polysaccharides(glycogen). Monthly sampling was occurred.The sexual reproductive cycle was defined through the combined use of these criteria: Monthly percentages of the gonad stages for each sex, the monthly gonad index (GI) , given as the ratio of the wet gonad weight (G) to the dray weight (DW)and the monthly percentage of individuals that undetermined sex. The gonad consists of two tufts of tubules on which saccules develop. Gonadal development was classified into five stages: post spawning, recovery, growth, advanced growth, and mature stage that were adapted from the earlier studies of holothurians. Histological preparations showed that the sex of larger individuals could be identified by the presence of oogonia and young oocytes in females, and spermatogonic stages in males.The mean diameter of the tubules and gonadal mass follow annual cycles, increasing from late winter through spring, and dropping abruptly after spawning in the summer. Gametogenesis is generally a prolongate process and begins in March. By summer the ovarian tubules contain oocytes with diameter of 120-240 pm and the testicular tubules contain an abundance of spermatozoa (diameter 5-6 gm ).Following spawning the predominant activity within the spent tubules is phagocytosis of the residual gamets.The active phase of gametogenesis (March to July), coincides with an increasing photoperiod regim, and an accelerated gametogenesis occurs in July when temperature is high. Throughout the year, the gonad of Stichopus hermanni is larger in males than in females, and this is due to the number of tubules in the testis rather than to tubules length or diameter.