31 resultados para Oil pollution of soils
em Aquatic Commons
Resumo:
20 samples of soil or sediment (7 of which were predominantly sand) from various locations were received for analysis of their content of organic pollutants. These analyses were performed using a capillary column gas chromatograph equipped with an electron impact (E.I.) mass spectrometer as detector and using computerised data storage. In addition to the target compounds, the full scan data were examined to determine the composition of natural organic products and a series of diagnostic fragment ions was used to search for additional anthropogenic products. Organic-rich environmental samples are notoriously difficult to analyse for pollutant organics owing to the presence of high concentrations of many natural organic compounds. A single procedure for extraction and clean-up was adopted. It was designed for chlorinated aliphatic and aromatic hydrocarbons and other pesticides containing acidic functional groups and was based on published methods for the determination of organic pollutants in soils and sediments. 4 soils and 2 sands showed levels of one or two groups of PCBs slightly in excess of the detection limit, one sample showed a similar level of 2,4-D and 3 samples contained dieldrin at or just above the detection limit.
Resumo:
Effluents leaving the Gilt Edge Mining properties in the Black Hills near Deadwood, South Dakota, were collected during April 1940. Field studies of these effluents and of the streams receiving them were made at the time and subsequently laboratory assays and analyses have been completed. ... Data from this particular case of mine waste pollution are presented here.
Resumo:
This is the report from the South Lancashire Fisheries Advisory Committee meeting, which was held on the 14th January 1976. The report contains information on land drainage representation on local committees, fisheries activities report, pollution on Colne water and Trawden water, oil pollution of the feeder stream to Scotman’s flash (Wigan), water bank releases at River Hodder, the progress made in implementing the recommendations contained in the 'Taking Stock' publication and a planning study for the post 1981 period. The section on fisheries activities reported by area fisheries officers looks at fish mortalities, feral mink, fish passing through counting stations at River Ribble and Hodder, and fish propagation plans for Langcliffe and Middleton hatcheries. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the report from the Derwent and West Cumbria Fisheries Advisory Committee meeting, which was held on the 8th October 1979. The report contains sections on the minutes of the last meeting along with the minutes of the meeting of the Regional Fisheries Advisory Committee held on 12th July 1979, information on the British Nuclear Fuel Limited abstraction from Wastwater, the application to abstract water from the River Ehen by Dumfriesshire Limestone Company, and oil pollution of the Rivers Keekle and Ehen. Also included is the report by the area fisheries officer which looks at river conditions and fishing of salmon, sea trout, non migratory trout and coarse fishing, migratory fish movement, pollution incidents and fish mortalities. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This research was carried out for recognizing Natural Flora Bacteria of oil pollution in the coasts of Queshm island. In The First steps, The coasts of this Island were scrutinized as a Field of research and For knowing whether oil stains exist or not. It gets obvious That southern coasts of Queshm have got oil pollution which is created by oil tankers which carry oil of Iran continental shelf. Them oil stains were sampled from to certain stations. In The First step, primary isolation of exisiting bacteria in every oil sample was done and then purification of each bacterium was carried out. Then each purified bacterium that has got strong, recognized, typic growth was enriched oil sample of T5 station. And Bacterium C4 (gram—negative coccobacillus) was chosen as the second priority From oil sample of TA station and Bacterium B1 (gram—positive coccus) was chosen as The third priority From oil sample of TI station. All The above mentioned bacteria were biochemically, physiologically and morphologically experimented For specking The species. According To The tests done and comparing with The tests done and comparing with the reference Berge y' s, bacterium A5 Pelongs to the species pseudomonas sp and becterium C4 belongs to the species Aeromonas sp and bacterium BI belongs to The species micrococcus sp. In The Last stage, bacterium with The First priority (TA5 pseudomonas sp) was used in the planned microcosm. The sake of optimum and adapting to Laboratory conditions Each enriched and purified bacterium was given a code for station and a code For itself . Then This bacterium was studied and it was proved that it has potentiality For using oil as a source of carbon. From oil samples of 10 stations, 30 various Colonies of bacterium were Isolated, of which 20 bacteria had the highest potentiality of growth. And the other bacteria that has no typic growth were omitted From being studied. Since all of These 20 bacterium are able to use oil, a bacterium with maximum rate of growth in the presence of crude oil and Lack of other hydrocarbonic sources and with The code A5 ( gram — negative Bacillus ) was chosen as First priority From The mentioned microcosm contains sea water , suspension oil degrading bacterium , crude oil, azote and various concentrations of carbon and Incubated in 30°` and shook 150 PRA1 According to the results , index oil degrading bacterium (pseudomonas sp) belongs oil sample of T5 stations (east of sheeb draz Gulf) which growth best and have the potentiality of degrading oil in 25 glli malas and 50 glli cheese water and with 5 gill urea .
Resumo:
Nowadays, Caspian Sea is in focus of more attentions than past because of its individualistic as the biggest lake in the world and the existing of very large oil and gas resources within it. Very large scale of oil pollution caused by development of oil exploration and excavation activities not only make problem for coastal facilities but also make severe damage on environment. In the first stage of this research, the location and quality of oil resources in offshore and onshore have been determined and then affected depletion factors on oil spill such as evaporation, emulsification, dissolution, sedimentation and so on have been studied. In second stage, sea hydrodynamics model is offered and tested by determination of governing hydrodynamic equations on sea currents and on pollution transportation in sea surface and by finding out main parameters in these equations such as Coriolis, bottom friction, wind and etc. this model has been calculated by using cell vertex finite volume method in an unstructured mesh domain. According to checked model; sea currents of Caspian Sea in different seasons of the year have been determined and in final stage different scenarios of oil spill movement in Caspian sea on various conditions have been investigated by modeling of three dimensional oil spill movement on surface (affected by sea currents) and on depth (affected by buoyancy, drag and gravity forces) by applying main above mentioned depletion factors.
Resumo:
There are various tools for monitoring the concentration of pollutants on aquatic ecosystems. Today these studies are based on biological monitoring and biomarkers. The aim of this study was to measure the concentration of the acetylcholinesterase (AChE), glutathione S-transferase and catalase as biomarkers of heavy metal contamination in pearl oyster Pinctada radiata and their mechanism in aquatic ecosystems. Heavy metals lead, cadmium and nickel were measured in soft tissue and studied stations in four seasons. Samples were collected seasonally in Lavan stations, Hendurabi and Nakhilo (in the northern Persian Gulf) from spring 2013 to winter of that year by scuba diving. Pearl oysters are divided according to their shells size; shells separated from soft tissues and were transferred to the laboratory for analysis of heavy metals and enzymes. Moopam standard method for were used for measuring the concentration of heavy metals and for analyzing tissue concentrations of glutathione S-transferase in Clam the method recommended by Habig et al in 1974 were used. For measuring acetylcholinesterase Ellman method were used. Catalase contamination in pearl oyster in the supernatant obtained from the study based on the method homogeate soft tissue of mussels (Abei, 1974) was evaluated. The results showed that the concentration of lead has significant difference in sediments station, the concentration of lead in Lavan is significantly higher than the other two stations, This could be due to the movement of tanker, boats and floating refueling and with a considerable amount of wastewater containing oil and Petroleum into the water, and also due to precipitation and industrial discharges the lead in the region is increasing, land-disposed sewage sludge, has large concentrations of lead. Compare the results of this study with standards related and other similar studies at the regional and international level showed that pollutant concentration of heavy metals in all cases significantly less than all the standards and guide values associated. And also compared to other world research results have been far less than others, Being Less of the conclusion given in this research according that nickel is one of the indicators of oil pollution in the study area and emissions have been relatively low of oil. The concentration of acetylcholinesterase at several stations, in large and small sizes and in the seasons had no significant difference. Variations of catalase, and glutathione S-transferase were almost similar to each other and parameters, station and seasons were significantly different in the concentrations of these enzymes. The effects and interaction between various parameters indicate that following parameters has impact on the concentration of catalase and glutathione S-transferase. Stations; Seasonal changes in antioxidant enzymes related to (assuming a constant in salinity and oxygen) to age, reproductive cycle, availability of food and water temperature. With increasing temperature at warm season, antioxidant enzymes were increase, with increasing temperature and abundance of food in the environment the amount of antioxidant enzymes may increase. The presence of the enzyme concentration may indicate that the higher levels of the enzyme to eliminate ROS activities to be any healthier situation. At the time of gonads maturation and spawning season catalase activity increases. This study also indicates that catalase was significantly higher in the warm season. Due to low pollutants of heavy metals in the study area, a lower level of contaminants were observed in shellfish tissue incidents of international standards and strong correlation between the amount of heavy metal contamination in pearl oyster tissue and enzymes was not observed. Therefore, we can say that the pearl oyster remains in a healthy condition and the amount of enzyme is normal.
Resumo:
Studies by the Freshwater Biological Association over the last 25 years have supplied data relevant to the levels of acidity in local soils and water before the onset of industrial pollution and current interest in acid rain. This article reviews published analysis from cores of lake sediments, in or near the catchment of the River Duddon. Electron spin resonance spectra of humic acids and iodine values confirm evidence from pollen analysis for a history of progressive acidification of the source material of lake sediments since before 5000 radiocarbon years, in upland catchments of the Lake District. Processes involved included: removal of basic ions from soils by rainfall, the effects of which were intensified by removal by man of deciduous forest; acidification of soils and waters by decomposition products of Calluna and further acidification of waters by Sphagnum species which colonized habitats where drainage became impeded by paludification processes.
Resumo:
Following a brief outline of the physiography of the Indian Ocean, an examination is made of the current situation regarding contamination of the environment. Prominent marine pollutants and the consequences of the marine disposal are discussed, considering in particular oil pollution, heavy metal pollution, agricultural wastes and domestic wastes. Research activities conducted in the area investigating the levels of marine pollution are detailed, and an evaluation made of future prospects concerning the monitoring and control of pollution.
Resumo:
This paper reports on the relationship between the seasonal variations in the oil content of the Indian oil sardines (Sardinella longiceps) and their frozen storage life at -l8°C and on the use of various chemicals and coating materials to extent their storage life. It is observed that there is an inverse relationship between the oil content and the frozen storage life- oil content varying from 10.33 to 42.43% (MFB) and storage life from 2 to 5 months. Extension of storage life is achieved by dipping in hydroquinone solution prior to freezing or by coating with agar after freezing. Data on changes in peroxide value, free fatty acids, moisture, drip and organoleptic characteristics during frozen storage are presented.
Resumo:
Biochemical ecotoxicology and biomarkers using are a new sciences that are used for biomonitoring in aquatic environment. Biomonitoring plays a vital role in strategies to identify, assess, and control contaminants. On the other hands in recent year's attention to polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals increased in aquatic environments because of their carcinogenic and mutagenic properties combined with their nearly ubiquitous distribution in depositional environments by oil pollution or industrial waste waters. The present research aimed to assess PAHs and Ni, V levels in surface sediments and bivalves (Anodonta cygnea)and the effects of PAHs and heavy metals (Ni,V) on the hemocyte of the Anodonta cygnea were investigated in 2 stations (Mahrozeh, Selke in Anzali Lagoon, North of Iran). Samples were collected during at 2 different periods of the year, Dry and rain seasons, (June & September) and to confirm our first observations, Cage station is added. The bivalves hemocytes were monitored for membrane injury by NRR methods (neutral red retention assay). Heavy metal (Ni, V) concentrations were determined by Atomic Absorption in Anodonta cygnea and the sediments in Anzali Lagoon. The vanadium concentration in bivalves and sediments was ND(not detect )-0.4231 μg/g and 1.4381-306.9603 μg/g dry weight respectively. Nickel concentration in bivalves and sediments was 0.0231-1.3351, 0.4024-19.3561 μg/g dry weight respectively. PAHs concentrations were determined by GC-Mass in Anodonta cygnea and the sediments. Average concentration of PAHs is 115-373.788 ng/g dry weight in bivalves and average concentration of PAHs is 34.85-1339.839 ng/g dry weight in sediments. Bioaccumulation sediments factor(BASF) is high about PAHs (>1) and BASF is low for Ni, V (<1) . Internal Damage mechanisms of bivalves hemocytes (cell mortality, dye leakage, decreased membrane stability, are observed (Lowe Methods). Statistical analysis was used to explore the relationship between altered cellular and above contaminants. There are power and negative correlations between PAHs and NRR method for hemocytes in Anodonta cygnea (P<0.0005), but good correlation is not observed between Ni, V and NRR method for hemocytes in every time. This research indicates that the NRR assay is a useful screening technique able to discriminate polluted sites and at first we announce that Anodonta cygnea hemocytes are efficient biomarker for PAHs pollutants in fresh water.
Resumo:
In this project sampling was done from 9 stations in 3 depths during 5 seasons to separate, identify and examine the biodiversity of cyanobacteria. Another sampling also has been done to analyse all physical and physicochemical parameters, primary production and polluting agents such as heavy metals and oil hydrocarbons in water and sediments. Along with optimization of Oscillatoria to study the ability of producing natural substances, these cyanobacteria were analysed from the point of antimicrobial and mutagenic effects. To examine the relationships among analysed parameters, the regression test, analysis of varian and Post Hoc were used. As the result of this study 48 genus of cyanobacteria were pecognised among which 35.5% were croco ccales and 64.4% were Hermogonals. Oscillatoria was one of the Filamentous cyanobacteria which had antibacterial and mutagenic effects. The results of multicommunity consistency varians test, post Hoc and homogenous subsets show significant difference between biodiversity of cyanotbacteria in coral ecosystem, Mangrove and transite. The linear correlation coefficient between biodiversity of cyanobacteria and bioenvironmental agents were examined, but there was no continuous relation between these factors and biological biodiversity. In Surface layer there was a significant correlation coefficent at 0.048 and probability at 95% confidence interval. Also, the biodiversity is depended on oil pollution and heavy metals such as copper (Cu) and chromium (Cr).
Resumo:
This work presents the development and application of a three-dimensional oil spill model for predicting the movement of an oil slick in the coastal waters of Singapore. In the model, the oil slick is divided into a number of small elements for simulating of the oil processes of spreading, advection, turbulent diffusion. This model is capable of predicting the horizontal movement of surface oil slick. Satellite images and field observations of oil slicks on the surface in the Singapore Straits are used to validate the newly developed model. Compared with the observations, the numerical results of the oil spill model show good conformity. In this study, the 3d model was generated using the geometrical data of Singapore Straits waters by GAMBIT which is a pre-processor of FLUENT programmed.
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)