67 resultados para Oil Sands
em Aquatic Commons
Resumo:
(PDF contains 5 pages)
Resumo:
Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)
Resumo:
During April 8th-10th, 2008, the Aliance for Coastal Technology (ACT) partner institutions, University of Alaska Fairbanks (UAF), Alaska SeaLife Center (ASLC), and the Oil Spill Recovery Institute (OSRI) hosted a workshop entitled: "Hydrocarbon sensors for oil spill prevention and response" in Seward, Alaska. The main focus was to bring together 29 workshop participants-representing workshop managers, scientists, and technology developers - together to discuss current and future hydrocarbon in-situ, laboratory, and remote sensors as they apply to oil spill prevention and response. [PDF contains 28 pages] Hydrocarbons and their derivatives still remain one of the most important energy sources in the world. To effectively manage these energy sources, proper protocol must be implemented to ensure prevention and responses to oil spills, as there are significant economic and environmental costs when oil spills occur. Hydrocarbon sensors provide the means to detect and monitor oil spills before, during, and after they occur. Capitalizing on the properties of oil, developers have designed in-situ, laboratory, and remote sensors that absorb or reflect the electromagnetic energy at different spectral bands. Workshop participants identified current hydrocarbon sensors (in-situ, laboratory, and remote sensors) and their overall performance. To achieve the most comprehensive understanding of oil spills, multiple sensors will be needed to gather oil spill extent, location, movement, thickness, condition, and classification. No single hydrocarbon sensor has the capability to collect all this information. Participants, therefore, suggested the development of means to combine sensor equipment to effectively and rapidly establish a spill response. As the exploration of oil continues at polar latitudes, sensor equipment must be developed to withstand harsh arctic climates, be able to detect oil under ice, and reduce the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for the U.S. to adopt a multi-agency cooperation for oil spill response, as the majority of issues surounding oil spill response focuses not on the hydrocarbon sensors but on an effective contingency plan adopted by all agencies. It is recommended that the U.S. could model contingency planning based on other nations such as Germany and Norway. Workshop participants were asked to make recommendations at the conclusion of the workshop and are summarized below without prioritization: *Outreach materials must be delivered to funding sources and Congressional delegates regarding the importance of oil spill prevention and response and the development of proper sensors to achieve effective response. *Develop protocols for training resource managers as new sensors become available. *Develop or adopt standard instrument specifications and testing protocols to assist manufacturers in further developing new sensor technology. *As oil exploration continues at polar latitudes, more research and development should be allocated to develop a suite of instruments that are applicable to oil detection under ice.
Resumo:
Four groups of brackishwater catfish were fed four diets: N.F. (NIOMR formula 1 feed), A. B. and C. for seven weeks. Feeds N.F., A., B and C. contained 1.21% fish oil + 5.59% vegetable oil; 1.21% fish oil + 7.39% vegetable oil; 1.21% fish oil + 9.09% vegetable oil; 1.21% fish oil + 10.89% vegetable oil respectively. Results of feeding trial showed that growth was best in the group fed diets containing 10.89% vegetable oil and least in those containing 9.09% vegetable oil
Resumo:
Ninety (90) hatchery bred fingerlings of Clarias gariepinus (mean weight: 0.96 ± 0.1g) were randomly placed in 15 plastic baths (25 litres each) at the Research laboratory and were exposed to different concentrations of oil products to determine their effects on the fish, to facilitate inferential deductions that will enhance effective aquatic environmental management. Three (3) replicate basins of 5 experimental treatments (crude oil, petrol oil, kerosene oil, engine oil and control) were used at a concentration of 1.25ml. L-1. The control experiment was devoid of oil treatment. Six (6) fingerlings were placed in each replicate basin, flooded with 20 litres of clean tap water and fed with nutrafin cichilid food, 2 times daily at 3% body weight. The results showed that the feeding behaviour and swimming performances of fish were reduced after 24 hours of the addition of the various oil pollutants. Mortality of fingerlings in the oiled basins increased as the hours of exposure increased (i.e. 24, 48, 72 and 96 hours). Recovery was not immediate in the treated basin while surviving fingerlings in the control basins grew up to post-fingerlings after 90 days (3 months). There were significant differences (P<0.01 and P<0.05) in the effect of crude oil and the petroleum products on the mortality rate of C. gariepinus when exposed to oil pollutants at 1.25ml. L-1 concentration
Resumo:
Studies were carried out to assess some macro and trace elements of mineral composition of the male and female Heterobranchus bidorsalis adults exposed to graded concentrations (1.00-8.00m/L-1) of Bonny-light crude oil (BLCO). The experiment was monitored for 4 days (toxicity) and 42days (recovery) periods. Significant decreases (P < 0.05)in the sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), phosphorus (P), zinc (Zn), iron (Fe), vanadium (Va), lead (Pb) and manganese (Mn) contents of the male H. bidorsalis corresponded with the increasing concentrations of BLCO. In contrast, the female fishes recorded significant increases (P < 0.05) in the values of the above elements in their tissues as the concentrations of BLCO increased. Furthermore, the values of Na, K, Mg, Ca, P, Zn, Fe, Va, Pb and Mn recorded in the male fishes where generally lower than those of their female counterparts and the control fish. Increased values of these elements were also recorded during the recovery periods (days 14, 28 and 42) of this study in the magnitudes of 15% at day 14, 20% at day 28 and 20% at day 42. This implied that the removal of crude oil stress during this period improved the quantity of these minerals deposited in the fish tissues. The highest percent proportion of Zn and the lowest proportion of Pb recorded in both male and female H. bidorsalis adults agreed with the report of other workers for other fish species. KEYWORDS: Heterobranchus bidorsalis, Mineral composition, Bonny-light crude oil, Toxicity, Recovery.
Resumo:
Between 1995 and 2002, we surveyed fish assemblages at seven oil platforms off southern and central California using the manned research submersible Delta. At each platform, there is a large horizontal beam situated at or near the sea floor. In some instances, shells and sediment have buried this beam and in other instances it is partially or completely exposed. We found that fish species responded in various ways to the amount of exposure of the beam. A few species, such as blackeye goby (Rhinogobiops nicholsii), greenstriped rockfish (Sebastes elongatus), and pink seaperch (Zalembius rosaceus) tended to avoid the beam. However, many species that typically associate with natural rocky outcrops, such as bocaccio (S. paucispinis), cowcod (S. levis), copper (S. caurinus), greenblotched (S. rosenblatti), pinkrose (S. simulator) and vermilion (S. miniatus) rockfishes, were found most often where the beam was exposed. In particular, a group of species (e.g., bocaccio, cowcod, blue (Sebastes mystinus), and vermilion rockfishes) called here the “sheltering habitat” guild, lived primarily where the beam was exposed and formed a crevice. This work demonstrates that the presence of sheltering sites is important in determining the species composition of man-made reefs and, likely, natural reefs. This research also indicates that adding structures that form sheltering sites in and around decommissioned platforms will likely lead to higher densities of many species typical of hard and complex structure.
Resumo:
To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known.
Resumo:
B:RUN is a low-level GIS software designed to help formulate options for the management of the coastal zone of Brunei Darussalam. This contribution presents the oil spill simulation module of B:RUN. This simple module, based largely on wind and sea surface current vector parameters, may be helpful in formulating relevant oil spill contingency plans. It can be easily adapted to other areas, as can the B:RUN software itself.
Resumo:
This study was designed to evaluate the travel characteristics of avid marine anglers off Louisiana in the Central Gulf of Mexico. It focuses on the complex marine travel patterns involving the extensive assemblage of oil and gas structures. In an intercept approach, marine recreationalf isherman were asked to identify near and offshore travel patterns on the day of the interview. Information was also solicited regarding how respondents selected and located fishing destinations as well as what method of fishing was undertaken that day. Petroleum platforms were a principal fishing destination, and platform anglers traveled an average distance of 75.5 km (40.7 n.mi.) to and from offshore fishing locations. In fishing an average of 6.5 platforms per trip, these anglers traveled about 21.3 km (11.5 n.mi.) between the first and last platform visited. Mean total distances for platform anglers were 96 km (51.8 n.mi). Travel distances for bay, nearshore, and bluewater anglers were also obtained.
Resumo:
Many studies have been made of the effects of oil on marine invertebrates, plants (marine algae and phytoplankton), and vertebrates such as seabirds and marine mammals. An excellent review of these findings, which includes some references to fish and pathological effects of aromatic hydrocarbons, has been published by the Royal Society, London (Clark, 1982). That review dealt with the environmental effects of such major oil spills or releases such as those by the tankers Torry Canyon (119,000 t) on the south coast of England, Metula (50-56,000 t) in the Straits of Magellan, Argo Merchant (26,000 t) off Cape Cod, and the super tanker Amoco Cadiz (223,000 t) on the coast of northern Brittany. Those spills were studied to determine their effect on living resources. In contrast there are few references on the impact of oil spills on pelagic fishery resources.