13 resultados para Office of Scientific Research and Development
em Aquatic Commons
Resumo:
This case study is part of STREAM’s four-country research project, which is exploring how recent advances in sustainable aquaculture have helped and can help improve coastal livelihoods and prevent unsustainable fishing practices in reef fisheries. (Pdf contains 65 pages).
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production
Resumo:
This case study describes the present status and trends, and provides recommendations for the improvement of aquatic resources management within Hon Mun Marine Protected Area (MPA), Nha Trang Bay, Khanh Hoa Province, Vietnam. The case study also evaluates options for improving the livelihoods of local villagers through the development of ecologically sustainable aquaculture and fisheries, which include diversification following careful selection and trial of appropriate culture species, and application of “best practice” culture methods. (Pdf contains 43 pages).
Resumo:
Wild-harvest fisheries for live reef fish are largely over-exploited or unsustainable because of over-fishing and the widespread use of destructive fishing practices such as blast and cyanide fishing. Sustainable aquaculture – such as that of groupers – is one option for meeting the strong demand for reef fish, as well as potentially maintaining or improving the livelihoods of coastal communities. This report from a short study by the STREAM Initiative draws on secondary literature, media sources and four diverse case studies from at-risk reef fisheries, to frame a strategy for encouraging sustainable aquaculture as an alternative to destructive fishing practices. It was undertaken as a component of the APEC-funded project Collaborative Grouper Research and Development Network (FWG/01/2001) to better understand how recent technical advances in grouper culture and other complementary work – including that of the Asia-Pacific Marine Finfish Aquaculture Network (APMFAN) hosted by NACA – could better support the livelihoods of poor coastal communities. (PDF contains 49 pages)
Resumo:
The article presents the R & D activities of Southeast Asian Development Center, Aquaculture Department (SEAFDEC/AQD) for 20 years. Its accomplishments in seafarming, community-based resource management, and sea ranching of snappers and mollucs are discussed.
Resumo:
This report provides an assessment of recent investigations into endocrine disruption in fresh and saltwater species of fish. Most work to date has concen-trated on reproductive endocrine disruption. Laboratory studies have shown a variety of synthetic and natural chemicals including certain industrial intermediates, PAHs, PCBs, pesticides, dioxins, trace elements and plant sterols can interfere with the endocrine system in fish. The potency of most of these chemicals, however, is typically hundreds to thousands of times less than that of endog-enous hormones. Evidence of environmental endocrine disruption ranges from the presence of female egg proteins in males and reduced levels of endogenous hormones in both males and females, to gonadal histopathologies and intersex (presence of ovotestes) fish. Overt endocrine disruption in fish does not appear to be a ubiquitous environmental phenomenon, but rather more likely to occur near sewage treatment plants, pulp and paper mills, and in areas of high organic chemical contamination. However, more wide-spread endocrine disruption can occur in rivers with smaller flows and correspondingly large or numerous wastewater inputs. Some of the most severe examples of endocrine disruption in fish have been found adjacent to sewage treatment plants. Effects are thought to be caused prima-rily by natural and synthetic estrogens and to a lesser extent by the degradation products of alkylphenol poly-ethoxylate surfactants. Effects found in fish near pulp and paper mills include reduced levels of estrogens and androgens as well as masculinization of females, and has been linked to the presence of β-sitosterol, a plant sterol. Effects seen in areas of heavy industrial activity typically include depressed levels of estrogens and androgens as well as reduced gonadal growth, and may be linked to the presence of PAHs, PCBs, and possibly dioxins. At this time, however, there is no clear indication that large populations of fish are being seriously impacted as a result of endocrine disruption, although additional work is needed to address this possibility. (PDF contains 63 pages)
Resumo:
The WorldFish Center was tasked to undertake a study to access, collate and develop background materials to produce an internationally linked and Africa-wide perspective on sectorally relevant policy issues. The specific objective of the study was to assess and define conditions and impact pathways, in Africa or elsewhere, where markets, policies, resources and technologies have combined to promote steady and sustainable growth of aquaculture, and where have been clear direct impacts on food supply, income, employment and consumption opportunities, as well as increase in supply that has led to stabilised prices. The study was also aimed at providing guidelines for scaling up the implementation of the synthesis study via Afri-FishNet (CAADP Fish Expert Pools) at the national and regional levels.
Resumo:
Conventional aquaculture has been promoted in Nigeria for the past five decades with minimal impact on rural communities: from the findings of Maclearen (1949) where he popularized the use of culturable fish predators Lutjanus sp; Pomades sp; Tarpon adanticus; Chrysichthys nigrodigitatus in earthen ponds near Onikan-Lagos, Nigeria; to the finding of Zwilling, 1963, who reported common carp, Cyprinus carpio propagation and culture in Panyan Fish Farm, near Jos; to the findings of FAO, 1965, when the potential culture of marine mullets culture in brackish water ponds in Buguma, Rivers State was presented. The work of other researchers Sivalingam, (1970; 1973), Ezenwa (1976), development officers and extension officers contributed to the development of aquaculture in few rural areas of the country and informed on public and private owned fish farm infrastructures. Despite a moderate long history of aquaculture research and development in Nigeria, an annual production level of 25,000 metric tons was recorded in 1999. This situation calls for a more sustainable approach for a stronger link between aquaculture research and technology transfer for the development of rural communities of Nigeria. This paper therefore examines some of the issues involved in the continuous flow of the new aquaculture technology in the improvement of fish protein output, standard of living of rural farmers and prevention of urban migration by the youth
Resumo:
There is compelling evidence that increased gender equity can make a significant contribution towards alleviating poverty and increasing food security. But past efforts to integrate gender into agricultural research and development practice have failed to address the inequalities that limit women’s access to agricultural inputs, markets, resources and advice. A Gender Transformative Approach (GTA) goes beyond just considering the symptoms of gender inequality, and addresses the social norms, attitudes, behaviors and social systems that underlie them. The CGIAR Research Program on Aquatic Agricultural Systems (AAS) has placed the GTA at the heart of its gender strategy. This workshop was an opportunity for researchers, practitioners and donors working in this area to address the challenge of how to translate this approach into actual research and development practice. The workshop recommended that a GTA should be adopted alongside, not instead of, existing efforts to reverse gender disparities in resources, technologies and markets. It is through this pairing that improved social and material outcomes can be achieved, with the expectation that when achieved together, both types of outcomes will be more lasting than if achieved individually.
Resumo:
On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.