21 resultados para Obregón, Alvaro, 1880-1928.
em Aquatic Commons
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Publication: The Canal Diggers in Panama 1904 to 1928 [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. (10 page document)
Resumo:
Entre las lagunas bonaerenses con pesca abundante del pejerrey, la de del Monte, en Guaminí, logró fama por su rendimiento extraordinario en determinados años, para luego decaer casi desapareciendo como fuente pesquera. En 1927 el gobierno provincial denunció el hecho de que "el pejerrey casi no crecía". Por esta causa, en ese año realicé estudios con tendencia a un planeamiento ecológico del problema pesquero y que repetí en 1928 cuando, según los pescadores, las condiciones de pesca eran más favorables. El hecho principal resultante es que, si bien el pejerrey de esa laguna no crecía más de 23 o 24 cm de longitud total, sus escamas exhibían 3 y 4 anillos, lo que indica otros tantos años de edad. Para esa edad, en otras lagunas el pejerrey es mucho más grande.
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
Taxonomic observations on the larval forms of Cyclops leuckarti are being discussed and compared with Cyclops oithonoides var. hyalina. Observations include Nauplius and Metanauplius stages. The author concludes that specific differences are recognisable even in the nauplius stages.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
Charles Henry Gilbert (1859-1928) was a pioneering ichthyologist who made major contributions to the study of fishes of the American West. As chairman of the Department ofZoology at Leland Stanford Junior University in Palo Alto, Calif., during 1891-1925, Gilbert was extremely devoted to his work and showed little patience with those ofa different mindset. While serving as Naturalist-in-Charge of the U.S. Fish Commission Steamer Albatross during her exploratory expedition to the Hawaiian Islands in 1902, Gilbert engaged in an acrimonious feud with the ship's captain, Chauncey Thomas, Jr. (1850-1919), U.S.N., over what Gilbert perceived to be an inadequate effort by the captain. This essay focuses on the conflict between two strong figures, each operatingf rom different world views, and each vying for authority. Despite the difficulties these two men faced, the voyage of the Albatross in 1902 must be considered a success, as reflected by the extensive biological samples collected, the many new species of animals discovered, and the resulting publication of important scientific papers.
Resumo:
Fishery science pioneers often faced challenges in their field work that are mostly unknown to modern biologists. Some of the travails faced by ichthyologist and, later, fishery biologist Charles Henry Gilbert (1859-1928) during his service as Naturalist-in-Charge of the North Pacific cruise ofthe U.S. Bureau of Fisheries Steamer Albatross in 1906, are described here, as are accomplishments of the cruise. The vessel left San Francisco, Calif., on 3 May 1906, just after the great San Francisco earthquake, for scientific exploration of waters of the Aleutian islands, Bering Sea, Kamchatka, Sakhalin, and Japan, returning to San Francisco in December. Because the expedition occurred just after the war between Japan and Russia of 1904-05 floating derelict mines in Japanese waters were often a menace. Major storms caused havoc in the region, and the captain of the Albatross, Lieutenant Commander LeRoy Mason Garrett (1857-1906), U.S.N., was lost at sea, apparently thrown from the vessel during a sudden storm on the return leg of the cruise. Despite such obstacles, Gilbert and the Albatross successfully completed their assigned chores. They occupied 339 dredging and 48 hydrographic stations, and discovered over 180 new species of fishes and many new species of invertebrates. The expedition's extensive biological collections spawned over 30 descriptive publications, some of which remain today as standards of knowledge.
Resumo:
Historical sources of the late-18th and 19th centuries were searched for information on coastal weather conditions in Southern California. Relatively calm winters until 1828 were followed by unusually stormy winters from about 1829 to 1839. Later periods were again predominantly calm, with notable exceptions related to the ENSO events of 1845 and 1878. Following decreases through the stormy 1830s, sizes of kelp forests appear to have rebounded in the 1840s. ENSO occurrences and eruption of the volcano Cosiguina in 1835 are likely causes for changing wind patterns. Our results link the unique AD 1840 Macoma leptonoidea pelecypod shell layer in laminated Santa Barbara Basin sediment ("Macoma event") to abruptly changing oceanographic and weather patterns.