2 resultados para ONE-DIMENSIONAL CONDUCTION
em Aquatic Commons
Resumo:
The last decade has seen the development and application of a spectrum of physical and numerical hydrographic models of the Chesapeake Bay and its tributaries. The success of the James River Hydraulic Model has initiated the construction of an estuarine hydraulic model of the entire Chesapeake System. Numerical analogues for hydrographic behavior and contaminant dispersion in one-, two-, and three dimensional model estuaries exist for various regions of the Bay. From an engineering viewpoint, one dimensional models are sufficiently advanced to be routinely employed in aiding management decisions. Bay investigators are playing leading roles in the development of two- and three-dimensional models of estuarine flows.
Resumo:
During October, 1972 the Patuxent River Estuary was monitored intensively and synoptically over two tidal cycles to determine the spatial and temporal patterns of various hydrodynamic, chemical and biological features. Forty-one depths at eleven stations along nine transects were sampled simultaneously at hourly intervals for salinity, temperature, dissolved oxygen, chlorohyll a, particulate nitrogen, nitrate, nitrite, total kjeldahl nitrogen, ammonia, particulate carbohydrate, dissolved organic carbon, total hydrolizable phosphorous, dissolved inorganic phosphorous, suspended sediment, particle size distribution, and zooplankton. Tidal velocity was continuously monitored at each depth by recording current meters. Riverine input and meteorological conditions were relatively stable for two weeks preceeding the deployment. This communication describes the calculation of the intrinsic rates of change of the observed variables from their measured distributions in the Estuary. The steady-state, one-dimensional equation of species continuity is employed to separate the advection and tidal dispersion of a hydrodynamically passive substance frbm its intrinsic rate of change at point. A new spatial transform is introduced for the purpose of interpolation and extrapolation of data.The intrinsic rate of change profiles reveal a region of heavy bloom activity in the upper estuary and a secondary bloom near the point in the River that most of the suspended material settles out. The changes in ammonia and nitrates are highly correlated to the productivity patterns. Phosphorous rates are less closely correlated to productivity. The perturbations that the Chalk Point steam electric power plant have on the heat and oxygen balances are easily discernible.