6 resultados para Nuclear collision
em Aquatic Commons
Resumo:
This study examined the efficiency of fish diversion and survivorship of diverted fishes in the San Onofre Nuclear Generating Station Fish Return System in 1984 and 1985. Generally, fishes were diverted back to the ocean with high frequency, particularly in 1984. Most species were diverted at rates of 80% or more. Over 90% of the most abundant species, Engraulis mordax, were diverted. The system worked particularly well for strong-swimming forms such as Paralobrax clothratus, Atherinopsis californiensis, and Xenistius californiensis, and did not appreciably divert weaker-swimming species such as Porichthys notatus, Heterostichus rostratus, and Syngnathus sp. Return rates of some species were not as high in 1985 as in 1984. Individuals of most tested species survived both transit through the fish return system and 96 hours in a holding net. Some species, such as E. mordox, X. californiensis, and Umbrina roncador, experienced tittle or no mortality. Survivorship of Seriphus politus was highly variable and no Anchoa delicatissima survived. (PDF file contains 22 pages.)
Resumo:
Opinion article
Resumo:
Nuclear RNA and DNA in muscle cell nuclei of laboratory-reared larvae of Walleye Pollock (Gadus chalcogrammus) were simultaneously measured through the use of flow cytometry for cell-cycle analysis during 2009–11. The addition of nuclear RNA as a covariate increased by 4% the classification accuracy of a discriminant analysis model that used cell-cycle, temperature, and standard length to measure larval condition, compared with a model without it. The greatest improvement, a 7% increase in accuracy, was observed for small larvae (<6.00 mm). Nuclear RNA content varied with rearing temperature, increasing as temperature decreased. There was a loss of DNA when larvae were frozen and thawed because the percentage of cells in the DNA synthesis cell-cycle phase decreased, but DNA content was stable during storage of frozen tissue.
Resumo:
Independent molecular markers based on mitochondrial and nuclear DNA were developed to provide positive identification of istiophorid and xiphiid billfishes (marlins, spearfishes, sailfish, and swordfish). Both classes of markers were based on amplification of short segments (<1.7 kb) of DNA by the polymerase chain reaction and subsequent digestion with informative restriction endonucleases. Candidate markers were evaluated for their ability to discriminate among the different species and the level of intraspecific variation they exhibited. The selected markers require no more than two restriction digestions to allow unambiguous identification, although it was not possible to distinguish between white marlin and striped marlin with any of the genetic characters screened in our study. Individuals collected from throughout each species’ range were surveyed with the selected markers demonstrating low levels of intraspecific character variation within species. The resulting keys provide two independent means for the forensic identification of fillets and for specific identification of early life history stages.