3 resultados para Nonlinear filter generators
em Aquatic Commons
Resumo:
The original method, proposed by Yentsch (1957), of determination of chlorophyll directly in the cells, attracts attention by its simplicity. In order to measure the content of chlorophyll by this method, a determined volume of suspension of algae is filtered through a membrane filter. The latter is dried a little, clarified by immersion oil, clamped between two glasses, and spectrophotometrized. Extinction is read off at , wavelengths equal to 670 millimicrons (around the maximum absorption of chlorophyll a in the cell) and 750 millimicrons (correction for non- specific absorption and dispersion of light by particles of the preparation). The method of Yentsch was employed by the authors for determination of chlorophyll-a in samples of phytoplankton. They conclude that in spite of the simplicity and convenience of determination the method must be applied sufficiently carefully. It is more suitable for analysis of cultures of algae, where, non-specific absorption of light is insignificant.
Resumo:
Stocks Reservoir is situated amidst the Forest of Bowland in the upper reaches of the old river valley of the Hodder. The reservoir was built in 1927 for the Fylde Water Board who primarily supplied water to Blackpool. The objective of this study is to assess the degree and likelihood of fish ingress onto the fish plates at the present and proposed stocking densities. An additional aim is to evaluate the operational implications, and if necessary suggest methods of alleviating the problem. Three spheres of study have been undertaken to achieve these objectives, these being: 1. To selectively stock the reservoir and monitor the angling club catches in order to assess the total population, relating it to fish plate losses and proposed stocking densities. 2. To monitor the fish taken from the fish plates and assess the reasons for their ingress. 3. To study the draw off tower and fish plates, and suggest ways of ameliorating or halting the loss of fish and consequent operational problems.
Resumo:
Time series analysis methods have traditionally helped in identifying the role of various forcing mechanisms in influencing climate change. A challenge to understanding decadal and century-scale climate change has been that the linkages between climate changes and potential forcing mechanisms such as solar variability are often uncertain. However, most studies have focused on the role of climate forcing and climate response within a strictly linear framework. Nonlinear time series analysis procedures provide the opportunity to analyze the role of climate forcing and climate responses between different time scales of climate change. An example is provided by the possible nonlinear response of paleo-ENSO-scale climate changes as identified from coral records to forcing by the solar cycle at longer time scales.