10 resultados para Nitzschia hantzschiana
em Aquatic Commons
Resumo:
Occurrence and abundance of Pseudo-nitzschia spp. at the mouth of the Maheshkhali channel of the Bay of Bengal, Bangladesh were studied. Plankton and water samples were collected monthly from the sub-surface water during high tide at daytime from June 2000 to May 2001. Four species of Pseudo-nitzschia, namely P. pungens, P. pseudodelicatissima, P. delicatissima and P. australis were identified and among them the first three were most commonly encountered and they varied seasonally. Pseudo-nitzschia delicatissima was the dominant species during the autumn and winter months, whereas P. pungens was dominant during the summer and spring months. Pseudo-nitzschia pseudodelicatissima exhibited its highest abundance level during the summer. Surface water temperature, salinity, nitrate-nitrogen (N03-N) and phosphate-phosphorus (P04-P) were recorded and their relationship with the occurrence and abundance of Pseudo-nitzschia species were studied. At the mouth of the Maheshkhali channel, Pseudo-nitzschia cell density was highest in late autumn (November) when highest salinity (35 o/oo) and P04-P (3.2 mg/l) concentrations and low temperature (23 °C) were recorded.
Resumo:
Sturgeons are important because of producing the expensive caviar. With regard to decreasing of natural stocks of these fishes, cultured sturgeons farms are expanding, so infectious or non-infectious agents can cause problems in this industry. One of the most important infectious diseases, are parasitic diseases, like gill parasites. In this study from March 2007 to June 2008, gills of 122 sturgeons of south west of Caspian Sea, 44 samples of juveniles from freshwater farms and 25 samples of cultured fishes in freshwater were collected and examined. Parasites were separated and determination of species and prevalence of them were done. Nitzschia sturionis and Diclybothrium armatum (monogenea) with general prevalence 8.7% in Acipenser persicus and 25.6% in Acipenser stellatus from sea sturgeons and Trichodina (sp.1, sp.2) and Ichthyophthirius multifiliis from freshwater sturgeons, were separated. Statistical analysis was done according to species, sex, length and weight of fishes. Pathology, morphometric and morphological characters of Nitzschia sturionis were also studied. At the end, we have suggested ways for health management of farms for prevention of parasites entry.
Resumo:
Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.
Resumo:
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.
Resumo:
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.
Resumo:
Benthic food webs often derive a significant fraction of their nutrient inputs from phytoplankton in the overlying waters. If the phytoplankton include harmful algal species like Pseudo-nitzschia australis, a diatom capable of producing the neurotoxin domoic acid (DA), the benthic food web can become a depository for phycotoxins. We tested the general hypothesis that DA contaminates benthic organisms during local blooms of P. australis, a widespread toxin producer along the US west coast. To test for trophic transfer and uptake of DA into the benthic food web, we sampled 8 benthic species comprising 4 feeding groups: filter feeders (Emerita analoga and Urechis caupo); a predator (Citharichthys sordidus); scavengers (Nassarius fossatus and Pagurus samuelis) and deposit feeders (Neotrypaea californiensis, Dendraster excentricus and Olivella biplicata). Sampling occurred before, during and after blooms of P. australis in Monterey Bay, CA, USA during 2000 and 2001. DA was detected in all 8 species, with contamination persisting over variable time scales. Maximum DA levels in N. fossatus (674 ppm), E. analoga (278 ppm), C. sordidus (515 ppm), N. californiensis (145 ppm), P. samuelis (56 ppm), D. excentricus (15 ppm) and O. biplicata (3 ppm) coincided with P. australis blooms, while DA levels in U. caupo remained above 200 ppm (max. = 751 ppm) throughout the study period. DA in 6 species exceeded levels thought to be safe for higher level consumers (i.e. ≥20 ppm) and thus is likely to have deleterious effects on marine birds, sea lions and the endangered California sea otter, known to prey upon these benthic species.
Resumo:
The area off Mithapur, Gujarat, India, is moderately rich in phytoplankton. The peak in phytoplankton population (av. 7.86 x 10 super(4)/l) was recorded in March. The average count of 0.71 x 10 super(4)/l observed in April was very low and later increased to 3.76 x 10 super(4)/l in December. Fifty-two species were recorded from the area. The most common species were Nitzschia closterium, N. pungens, N. seriata, N. sigma, Chaetoceros simplex, C. difficilis and C. sociale. The importance of Nitzschia spp as indicators of organically polluted environment was discussed.
Resumo:
Distribution of phytoplankton, chlorophyll A and phaeophytin was studied at different locations in the Mahi Estuary, Gujarat, India during 1982. The water quality at the discharge point was poor while the region away from it was relatively unpolluted. The results indicated a wide range of variation in phytoplankton population (7.68-5010, 96 x 10 super(4) cells/l, chl. a 2.22-58.22 mg/m super(3) and phaeophytin [0.20-10.21 mg/m super(3)]. The ratio of chl. a/phaeophytin were remarkably low at highly polluted stations. Higher abundance of the genera Oscillatoria and Nitzschia were recorded at polluted stations. The diversity of species at the unpolluted station was higher (1.56) as compared to the polluted station (1.07).
Resumo:
Phytoplankton population (3.37-56.09 x 10 super(4) cells/1) and pigments (chil. a 1.10-26.8 mg/m super(3)) in the waters off Porbandar indicated wide variations. Higher cell counts and lower diversity of species were encountered in the nearshore waters as compared to the waters of the seaward side. The concentration of dissolved oxygen was correlated with the phytoplankton population and pigments. 71 species belonging to 28 genera of algae were recorded. Species of Nitzschia were dominant almost at all stations. Species of Chaetoceros were very common along the middle and western transects.
Resumo:
Microalgal community structure in experimental carp-pangasiid catfish polyculture ponds under four different stocking rates (treatments) each with three replications in the Field Laboratory of the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh was studied. A total of 38 microalgal genera were identified under four major groups: 18 genera belong to Chlorophyceae, 9 to Cyanophyceae, 8 to Bacillariophyceae and 3 to Euglenophyceae. Chlorophyceae was abundant in all treatments followed by Cyanophyceae, Bacillariophyceae and Euglenophyceae throughout the study period. The cell densities of total microalgal population varied between 51.66x10^3 cells/L in June in T1 and 126.4x10^3 cells/L in August in T2. The appearance of Microcysris, Oscillatoria, Gomphospheria, Hildenbrandia, Chlorella, Scenedesmus, Cyclotella, Navicula, Nitzschia, Euglena and Phacus as dominant genera throughout the study period may related to sufficient nutrient availability, good light conditions and high growth rate of these genera. Water quality parameters of the experimental ponds were within suitable range for microalgal production and fish culture though the nutrient (nitrate-nitrogen and phosphate-phosphorus) concentrations were high. The factors involved in structuring a phytoplankton community arise from the relationship generated by physical, chemical and biological conditions especially the stocked planktivorous carps. Microalgal bloom formation is very common in pangasiid catfish monoculture ponds but in the present study bloom was not formed and the algal species diversity was found to be slightly increased with the study period. The introduction carps of carps in the experimental ponds might have helped in controlling the microalgal bloom formation and maintenance of the species diversity.