10 resultados para National service
em Aquatic Commons
Resumo:
This report was developed to help establish National Ocean Service priorities and chart new directions for research and development of models for estuarine, coastal and ocean ecosystems based on user-driven requirements and supportive of sound coastal management, stewardship, and an ecosystem approach to management. (PDF contains 63 pages)
Resumo:
The United States has managed and analyzed its marine fisheries since 1871, and since 1970 via NOAA’s National Marine Fisheries Service (NMFS). As the primary directive moved from aiding fishermen in expanding their operations emphasizing conservation, the government over time recognized that management involves influencing people not fish, and has hired social scientists to complement the biologists who assess fish populations. This change has not always been smooth. We use archival documents and oral histories to trace the development of sociocultural analytic capabilities within NMFS and describe future plans for growing the program. Four points are made. First, NMFS has created the best developed social science program in NOAA. Second, established institutions change slowly; achieving the social science presence in NMFS has taken over 25 years. Third, change needs visionaries and champions with both tenacity and opportunity. Fourth, social science data collection and research helps in making fishery management decisions, but they have also been useful in evaluating the impact and helping with the recovery from Hurricane Katrina. Good work finds other uses.
Resumo:
Data quantifying various aspects of the Corps of Engineers wetland regulatory program in Louisiana from 1980 through 1990 are presented. The National Marine Fisheries Service (NMFS) habitat conservation efforts for this time period are described and averages involved delineated. From 1980 through 1990, NMFS reviewed 14,259 public notices to dredge, fill, or impound wetlands in Louisiana and provided recommendations to the Corps on 962 projects which proposed to impact over 600,000 acres of tidally influenced wetlands. NMFS recommended that impacts to about 279,000 acres be avoided and that more than 150,000 acres of compensatory mitigation be provided. During this period, marsh management projects proposed impounding over 197,000 acres of wetlands. On a permit by permit basis, 43% of NMFS recommendations were accepted, 34% were partially accepted, and 23% were rejected.
Resumo:
Dataq uantifying the area of habitat affected by Federal programs that regulate development in coastal zones of the southeastern United States are provided for 1988. The National Marine Fisheries Service (NMFS) made recommendations on 3,935 proposals requiring Federal permits or licenses to alter wetlands. A survey of 977 of these activities revealed that 359,876 acres of wetlands that support fishery resources under NMFS purview were proposed for some type of alteration or manipulation. Almost 95 percent of this acreage was for impounding andl/or manipulation of water levels in Louisiana marshes. The NMFS did not object to alteration of 173,284 acres and recommended the conservation of 186,592 acres. To offset habitat losses, 1,827 acres of mitigation were recommended by the NMFS or proposed by applicants and/or the Corps of Engineers (COE). From 1981 to 1988 the NMFS has provided in depth analyses on 8,385 projects proposing the alteration of at least 656,377 acres of wetlands. A follow-up survey on the disposition of 339 permits handled by the COE during 1988 revealed that the COE accepted NMFS recommendations on 68 percent. On a permit-by-permit basis, 13 percent of NMFS recommendations were partially accepted, 17 percent were completely rejected, and 2 percent were withdrawn. The permit requests tracked by the NMFS proposed the alteration of 2,674 acres of wetlands. The COE issued permits to alter 847 acres or 32 percent of the amount proposed.
Resumo:
This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existing data collection and analysis programs to provide an adequate knowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.
Resumo:
Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.
Resumo:
The Gap Analysis of Marine Ecosystem Data project is a review of available geospatial data which can assist in marine natural resource management for eight park units. The project includes the collection of geospatial information and its incorporation in a single consistent geodatabase format. The project also includes a mapping portal which can be seen at: http://ccma.nos.noaa.gov/explorer/gapanalysis/gap_analysis.html In addition to the collection of geospatial information and mapping portal we have conducted a gap analysis of a standard suite of available information for managing marine resources. Additional gap were identified by interviewing park service staff.