34 resultados para National Institute of Education (U.S.)

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2001, biannual fish and habitat monitoring has been conducted for the shallow (> 30 m), colonized pavement and gorgonian dominated Buck Island Reef National Monument (BIRNM) St. Croix, USVI and adjacent waters. during October, 2005, widespread coral bleaching was observed within the ∼50 square-kilometer study area that was preceded by 10 wks of higher than average water temperatures (28.9–30.1 °C). Random transects (100 square meters) were conducted on linear reefs, patch reefs, bedrock, pavement, and scattered coral/rock habitats during October 2005, and April and October 2006, and species specific bleaching patterns were documented. During October 2005 approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching. Coral cover for Montastraea annularis and species of the genus Agaricia were the most affected, while other species exhibited variability in their susceptibility to bleaching. Bleaching was evident at all depths (1.5–28 m), was negatively correlated with depth, and positively correlated with habitat complexity. Bleaching was less prevalent at all depths and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006. Four species and one genus did not exhibit signs of bleaching throughout the study period (Dendrogyra cylindrus, Eusmilia fastigata, Mussa angulosa, Mycetophyllia aliciae, Scolymia spp.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited information currently exists on the recovery periods of bleached corals as well as the spatial extent, causative factors, and the overall impact of bleaching on coral reef ecosystems. During October, 2005, widespread coral bleaching was observed within Buck Island Reef National Monument (BUIS) St. Croix, USVI. The bleaching event was preceded by 10 weeks of higher than average water temperatures (28.9-30.1°C). Random transects (100 square meters) over hard bottom habitats (N=94) revealed that approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching; species-specific bleaching patterns were variable throughout the study area. Coral cover for Montastraea annularisand species of the genus Agariciawere the most affected, while other species exhibited variability to bleaching. Although a weak but significant negative relationship (r2=0.10, P=0.0220) was observed, bleaching was evident at all depths (1.5-28 m). Bleaching was spatially autocorrelated (P=0.001) and hot-spot analysis identified a cluster of high bleaching stations northeast of Buck Island. Bleaching was significantly reduced within all depth zones and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal shrimp trawl fisheries have long been the focus of conservation actions to reduce turtle bycatch and mortality in the Gulf of Mexico and the U.S. Atlantic (NRC, 1990). Calculation of catch rates of sea turtles in shrimp trawls is necessary to evaluate the impact on sea turtle populations. In this paper we analyze sea turtle bycatch to provide an estimate of the current number of interactions with otter trawl gear as well as an estimate of the number of fatal inions in Southeast U.S. waters and the Gulf of Mexico. We also provide an estimate of the number of individuals likely to die in the future with the new regulations that will require an increase in the size of the escape openings in trutle excluder devices (TEDs). The new regulations will allow many more turtles to escape. Other gears also are discussed. (PDF contains 24 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This assessment applies to cobia (Rachycentron canadum) located in the territorial waters of the U.S. Gulf of Mexico. Separation of the Gulf of Mexico and Atlantic Ocean is defined by the seaward extension of the Dade/Monroe county line in south Florida. Mixing of fish between the Atlantic and Gulf of Mexico occurs in the Florida Keys during winter months. Cobia annually migrate north in early spring in the Gulf to spawning grounds in the northern Gulf of Mexico, returning to the Florida Keys by winter. Catches of cobia in the Gulf of Mexico are dominated by recreational landings, accounting for nearly 90% of the total. Since 1980, the landings of cobia in the recreational fishery have remained fairly stable at around 400-600 mt with a slight peak of 1,014 mt in 1997. The recreational fishery was estimated to have landed 471 mt in 2000. The landings from the commercial fishery have shown a steady increase from 45 mt in 1980 to a peak of 120 mt in 1994, followed by a decline to 62 mt in 2000. The previous assessment of cobia occurred in 1996 using a virtual population analysis (VPA) model. For this analysis a surplus-production model (ASPIC) and a forward-projecting, age-structured population model programmed in the AD Model Builder (ADMB) software were applied to cobia data from the Gulf of Mexico. The primary data consisted of four catch-per-unit-effort (CPUE) indices derived from the Marine Recreational Fisheries Statistics Survey (MRFSS) (1981-1999), Southeast region headboat survey (1986-1999), Texas creel survey (1983-1999), and shrimp bycatch estimates (1980-1999). Length samples were available from the commercial (1983-2000) and recreational (1981-2000) fisheries. The ASPIC model applied to the cobia data provided unsatisfactory results. The ADMB model fit described the observed length composition data and fishery landings fairly well based on graphical examination of model residuals. The CPUE indices indicated some disagreement for various years, but the model fit an overall increasing trend from 1992-1997 for the MRFSS, headboat, and Texas creel indices. The shrimp bycatch CPUE was treated as a recruitment index in the model. The fit to these data followed an upward trend in recruitment from 1988-1997, but did not fit the 1994-1997 data points very well. This was likely the result of conflicting information from other data sources. Natural mortality (M) for cobia is unknown. As a result, a range of values for M from 0.2-0.4, based on longevity and growth parameters, were selected for use in the age-structured model. The choice of natural mortality appears to greatly influence the perceived status of the population. Population status as measured by spawning stock biomass in the last year relative to the value at maximum sustainable yield (SSB2000/SSBMSY), spawning stock biomass in the last year relative to virgin spawning stock biomass (SSB2000/S0), and static spawning stock biomass per recruit (SSBR) all indicate the population is either depleted, near MSY, or well above MSY depending on the choice of M. The variance estimates for these benchmarks are very large and in most cases ranges from depleted to very healthy status. The only statement that can be made with any degree of certainty about cobia in the Gulf of Mexico is that the population has increased since the 1980s. (PDF contains 61 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessments of the Atlantic red drum for the northern (North Carolina and north) and southern (South Carolina through east coast of Florida) regions along the U. S. Atlantic coast were recently completed. The joint Red Drum Technical Committee (SAFMC/ASMFC) selected the most appropriate catch matrix (incorporating an assumption on size of recreationally-released fish), selectivity of age 3 relative to age 2, and virtual population analysis (FADAPT). Given gear- and age-specific estimates of fishing mortality (F) for the 1992-1998 period, analyses were made of potential gains in escapement through age 4 and static spawning potential ratio (SPR) from further reductions in fishing mortality due to changes in slot and bag limits. Savings from bag limits were calculated given a particular slot size for the recreational fishery, with no savings for the commercial fisheries in the northern region due to their being managed primarily through a quota. Relative changes in catch-at-age estimates were used to adjust age-specific F and hence calculated escapement through age 4 and static SPR. Adjustment was made with the recreational savings to account for release mortality (10%, as in the stock assessment). Alternate runs for the northern region commercial fishery considered 25% release mortality for lengths outside the slot (instead of 0% for the base run), and 0% vs. 10% gain or loss across legal sizes in F. These results are summarized for ranges of bag limits with increasing minimum size limit (for fixed maximum size), and with decreasing maximum size limit (for fixed minimum size limit). For the southern region, a bag limit of one-fish per angler trip would be required to attain the stated target of 40% static SPR if the current slot limit were not changed. However, for the northern region, a bag limit of one-fish per angler trip appears to be insufficient to attain the stated target of 40% static SPR while maintaining the current slot limit. (PDF contains 41 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first comprehensive CAS was carried out during the month of July 2005 This is the second report of CAS for the month of August 2005 following the July report. The design and methodology followed was the same as in July. This report highlights the results obtained in August catch assessment survey. The report gives estimates of mean catch rates in Kgs./boat/day, total catches in M.tons and values of the catch by species. The total catch for August was 31,633.0 M. tons. This is lower when compared with the July catch which was 39,745.1 M. tons. In August the catch composed of Dagaa (45%), Nile perch (33%), Haplochromines (16%), Tilapiines (5%) and all other species combined (1%). (PDF contains 14 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this alarming trend has focused attention on the need to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Virgin Islands National Park, was conducted from 2001 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, etc.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by amphibian species in each habitat. Line transect methods were used to estimate density of some amphibian species and double observer analysis was used to refine counts based on detection probabilities. Opportunistic collections were used to augment the visual encounter methods for rare species. Data were collected during four sampling periods and every major trail system throughout the park was surveyed. All of the amphibian species believed to occur on St. John were detected during these surveys. One species not previously reported, the Cuban treefrog (Osteopilus septentrionalis), was also added to the species list. That species and two others (Eleutherodactylus coqui and Eleutherodactylus lentus) bring the total number of introduced amphibians on St. John to three. We detected most of the reptile species thought to occur on St. John, but our methods were less suitable for reptiles compared to amphibians. No amphibian species appear to be in decline at this time. We found no evidence of disease or of malformations. Our surveys provide a snapshot picture of the status of the amphibian species, so continued monitoring would be necessary to determine long-term trends, but several potential threats to amphibians were identified. Invasive species, especially the Cuban treefrog, have the potential to decrease populations of native amphibians. Introduced mammalian predators are also a potential threat, especially to the reptiles of St. John, and mammalian grazers might have indirect effects on amphibians and reptiles through habitat modification. Finally, loss of habitat to development outside the park boundary could harm some important populations of amphibians and reptiles on the island.