2 resultados para NUCLEAR REACTIONS (120)Sn((6)Li, X)

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elkhorn Slough was first exposed to direct tidal forcing from the waters of Monterey Bay with the construction of Moss Landing Harbor in 1946. Elkhorn Slough is located mid-way between Santa Cruz and Monterey close to the head of Monterey Submarine Canyon. It follows a 10 km circuitous path inland from its entrance at Moss Landing Harbor. Today, Elkhorn Slough is a habitat and sanctuary for a wide variety of marine mammals, fish, and seabirds. The Slough also serves as a sink and pathway for various nutrients and pollutants. These attributes are directly or indirectly affected by its circulation and physical properties. Currents, tides and physical properties of Elkhorn Slough have been observed on an irregular basis since 1970. Based on these observations, the physical characteristics of Elkhorn Slough are examined and summarized. Elkhorn Slough is an ebb-dominated estuary and, as a result, the rise and fall of the tides is asymmetric. The fact that lower low water always follows higher high water and the tidal asymmetry produces ebb currents that are stronger than flooding currents. The presence of extensive mud flats and Salicornia marsh contribute to tidal distortion. Tidal distortion also produces several shallow water constituents including the M3, M4, and M6 overtides and the 2MK3 and MK3 compound tides. Tidal elevations and currents are approximately in quadrature; thus, the tides in Elkhorn Slough have some of the characters of a standing wave system. The temperature and salinity of lower Elkhorn Slough waters reflect, to a large extent, the influence of Monterey Bay waters, whereas the temperature and salinity of the waters of the upper Slough (>5 km from the mouth) are more sensitive to local processes. During the summer, temperature and salinity are higher in the upper slough due to local heating and evaporation. Maximum tidal currents in Elkhorn Slough have increased from approximately 75 to 120 cm/s over the past 30 years. This increase in current speed is primarily due to the change in tidal prism which has increased from approximately 2.5 to 6.2 x 106 m3 between 1956 and 1993. The increase in tidal prism is the result of both 3 rapid man-made changes to the Slough, and the continuing process of tidal erosion. Because of the increase in the tidal prism, the currents in Elkhorn Slough exhibit positive feedback, a process with uncertain consequences. [PDF contains 55 pages]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of three microalgae species, viz., Nannochloropsis oculata, Tetraselmis chui and Chaetoceros muelleri which are commonly used in aquaculture, was investigated using three different inorganic nutrient media: (i) Modified Guillard's f/2 medium (ii) Rix Mix medium and (iii) BFRI medium. Each microalgae species was cultured for 24 days in small- scale with initial inoculation density of 17xl04 cell /ml in the three media with triplicates. N. oculata cultured in modified Guillard's f/2 medium showed superior growth with a mean peak density of 221 ±4.24 x 104 cell/ ml, to Rix Mix medium (141 ± 10.54xl04 cell/ml) and BFRI medium (47±4.94 x 104 cell/ml) on the 16th day of culture at stationary phase. Considering the increase in cell density for 20 days of culture in Rix Mix medium, C. muelleriwas significantly (P<0.05) highest than in other two media. N. oculata cultured in BFRI medium resulted in the poorest growth with a mean peak increase in density of 84±9.19 x 104 cell/ml in 12 days of culture. However, with an increase in cell density, growth of T. chui (182 ± 6.26 x 104 cell/ml) was significantly (P<0.05) higher in BFRI medium than in modified Guillard's f/2 medium. The results of the present study suggest that N. oculata and C. muelleri can be grown very well in both the modified Guillard's f/2 medium and Rix Mix medium. Better growth of T. chui can be obtained while culturing either in BFRI and Rix Mix medium. These three nutrient media used in the present study may be useful for microalgae species culture for establishing green-water culture for suitable target zooplankton, and fish and crustacean larvae in marine and brackishwater hatcheries.