2 resultados para NP-árduo
em Aquatic Commons
Resumo:
Village tanks are put to a wide range of uses by the rural communities that depend on them for their survival. As the primacy of irrigation has decreased under these tanks due to a variety of climatic and economic reasons there is a need to reevaluate their use for other productive functions. The research presented in this paper is part of a programme investigating the potential to improve the management of living aquatic resources in order to bring benefits to the most marginal groups identified in upper watershed areas. Based on an improved typology of seasonal tanks, the seasonal changes and dynamics of various water quality parameters indicative of nutrient status and fisheries carrying capacity are compared over a period of one year. Indicators of Net (Primary) Productivity (NP): Rates of Dissolved Oxygen (DO) change, Total Suspended Solids (TSS): Total Suspended Volatile solids (TVSS) ratios are the parameters of principle interest. Based on these results a comparative analysis is made on two classes of ‘seasonal’ and ‘semi-seasonal’ tanks. Results indicate a broad correlation in each of these parameters with seasonal trends in tank hydrology. Highest productivity levels are associated with periods of declining water storage, whilst the lowest levels are associated with the periods of maximum water storage shortly after the NW monsoon. This variation is primarily attributed to dilution effects associated with depth and storage area. During the yala period, encroachment of the surface layer by several species of aquatic macrophyte also has progressively negative impacts on productivity. The most seasonal tanks show wider extremes in seasonal nutrient dynamics, overall, with less favourable conditions than the ‘semi-seasonal’ tanks. Never the less all the tanks can be considered as being highly productive with NP levels comparable to fertilised pond systems for much of the year. This indicates that nutrient status is not likely to be amongst the most important constraints to enhancing fish production. Other potential management improvements based on these results are discussed. [PDF contains 19 pages]
Resumo:
This is the Proposed Environmental Quality Standards (EQS) for Nonylphenol in Water produced by the Environment Agency in 1997. The report reviews the properties and uses of Nonylphenol, its fate, behaviour and reported concentrations in the environment, and critically assesses available data on its toxicity and bioaccumulation. The information is used to derive EQSs for the protection of fresh and saltwater life as well as for water abstracted to potable supply.Nonylphenol (NP) is used extensively in the production of other substances such as non-ionic ethoxylate surfactants. It is through the incomplete anaerobic biodegradation of these surfactants that most nonylphenol reaches the aquatic environment in effluents, e.g. from sewage treatment works and certain manufacturing operations. It was explicitly stated by the Environment Agency that the EQS was to be derived for NP and not Nonylphenol ethoxylates. However, since NP is unlikely to be present in the aquatic environment in the absence of other nonylphenol ethoxylate (NPE) degradation by-products, the toxicity, fate and behaviour of some of these (i.e. nonylphenol mono- and diethoxylates (NP1EO and NP2EO), mono- and di-nonylphenoxy carboxylic acids (NP1EC and NP2EC) have also been considered in this report. In the aquatic environment and during sewage treatment, NPEs are rapidly degraded to NP under aerobic conditions. NP may then be either fully mineralised or may be adsorbed to sediments. Since NP cannot be biodegraded under anaerobic conditions it can accumulate in sediments to high concentrations.