4 resultados para NON-COVALENT COMPLEX

em Aquatic Commons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 66 kilo-Dalton (k-Da) protein split off from the cross linked myosin heavy chain (CMHC) formed due to the setting of Alaska pollack surimi, frozen-storage of Pacific cod flesh, and vinegar-curing of Pacific mackerel mince was identified as a light meromyosin (LMM). Puncture and stress-relaxation tests showed that the actomyosin subunits (AMS) of Alaska pollack surimi, upon setting at 30°C, transformed into gel, although the elasticity of this gel was very low when compared to the gels from surimi or actomyosin (AM). Electrophoretic studies showed that the band due to LMM in the gel from AMS gradually disappeared with the progress of setting but higher molecular weight polymer did not form. The intensity of the bands due to other myosin sub-fragments decreased a little. The findings suggest that at setting temperature, LMM of MHC molecule leads to an unfolding resulting in an intramolecular aggregation through non-covalent interactions, and thus plays a significant role in the crosslinking of MHC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the low temperature setting of fish paste, myosin heavy chain (MHC) is polymerized to cross-linked myosin heavy chain (CMHC), which is considered to occur by the action of endogenous transglutaminase (TGase). In this study the contribution of TGase on the setting of Alaska pollack surimi at different temperatures was studied. Alaska pollack surimi was ground with 3% NaCl, 30% h2o and with or without ethylene glycol bis (β-aminoethylether) N, N, N¹,N¹- tetra acetic acid (EGTA), an inhibitor of TGase. Among the pastes without EGTA, highest TGase activity was observed at 25°C but breaking force of the gel set at 25°C was lower than that set at 30°, 35°, and 40°C. Addition of EGTA (5m mol/kg) to the paste suppressed TGase activity at all setting temperatures from 20° to 40°C. Gelation of the pastes and cross-linking of MHC on addition of EGTA were suppressed completely at 20° and 25°C, partially at 30° and 35°C, and not at all at 40°C. The findings suggested that during the setting of Alaska pollack surimi TGase mediated cross-linking of MHC was strong at around 25°C but the thermal aggregation of MHC by non-covalent bonds was strong at above 35°C. Setting of surimi at 40°C and cross-linking of its MHC did not involve TGase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influence of two different forms of nitrogen on growth and physiological aspects of water-cultured seedlings of Rhizophora apiculata was studied. Of the two forms of nitrogen supplied to the growth medium, ammonium nitrogen was better than nitrate nitrogen by exhibiting increased dry matter production, shoot length, leaf area and also enhanced the contents of carotenoids, chlorophylls and their presence in photosystems and light harvesting protein complex.