27 resultados para Municipal environmental management
em Aquatic Commons
Resumo:
Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)
Resumo:
Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)
Resumo:
Aquaculture depends largely upon a good aquatic environment. The quality of the aquatic medium determines success to a large extent in aquaculture. The medium is particularly vulnerable to excessive abstraction (i.e surface or groundwater) and contamination from a range of sources (industrial, agricultural or domestic) as well as risks of self-pollution. Environmental management options proffered so far include: improvements in farming performance (especially related to feed and feeding strategies, stocking densities, water quality management, disease prevention and control, use of chemicals, etc.) and in the selection of sites and culturable species, treatment of effluents, sensitivity of recipient waters and enforcement of environmental regulations and guidelines specific to the culture system. There are presently conceptual frameworks for aquatic environment management backed by legal administrative tools to create or enforce rational system for water management, fisheries and aquaculture development strengthened by adaptive institutionalisation
Resumo:
What Are ~umulat iveE ffects? Coastal managers now recognize that many of the most serious resource degradation problems have built up gradually as the combined outcome of numerous actions and choices which alone may have had relatively minor impacts. For example, alteration of essential habitat through wetland loss, degradation of water quality from nonpoint source pollution, and changes in salinity of estuarine waters from water diversion projects can be attributed to numerous small actions and choices. These incremental losses have broad spatial and temporal dimensions, resulting in the gradual alteration of structure and functioning of biophysical systems. In the environmental management field, the term "cumulative effects" is generally used to describe this phenomenon of changes in the environment that result from numerous, small-scale alterations.
Resumo:
The Tanzania Coastal Management Partnership (TCMP) works to implement the National Integrated Coastal Environmental Management Strategy (ICEMS) in Tanzania’s coastal landscapes and seascapes, funded in large measure by the U.S. Agency for International Development. The overarching goal of the Sustainable Coastal Communities and Ecosystems in Tanzania (SUCCESS Tanzania) initiative is to conserve coastal and marine biodiversity while improving the well being of coastal residents through implementation of the Tanzania ICEMS and related ICM policies and strategies. It does this by focusing on three key results: -Policies and Laws that Integrate Conservation and Development Applied -Participatory Landscape Scale Conservation Practiced -Conservation Enterprises Generate Increased and Equitable Benefits from Sustainable Use An additional result sought in the program is gender equity and HIV/AIDS preventive behaviors promoted through communicating HIV/AIDS, environment, and equity messages. (PDF contains 3 pages)
Resumo:
The fisheries of small lakes are important for producing fish for local populations not clear the larger lakes.The satelite support important fisheries and other economic activities like fishing water for domestic purpose and tourism besides socio-cultural functions.
Resumo:
Student projects included: conservation and protection of critical coral habitats in Phuket; assessing the carrying capacity on conservation and protection strategies; proactive stakeholder strategy to tackle an environmental threat; improving the environmental management through participation and sustainable freshwater management. All of these projects were conducted on Racha Yai Island in Phuket.
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop entitled "Technologies for Measuring Currents in Coastal Environments" was held in Portland, Maine, October 26-28, 2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), an ACT partner organization. The primary goals of the event were to summarize recent trends in nearshore research and management applications for current meter technologies, identify how current meters can assist coastal managers to fulfill their regulatory and management objectives, and to recommend actions to overcome barriers to use of the technologies. The workshop was attended by 25 participants representing state and federal environmental management agencies, manufacturers of current meter technologies, and researchers from academic institutions and private industry. Common themes that were discussed during the workshop included 1) advantages and limitations of existing current measuring equipment, 2) reliability and ease of use with each instrument type, 3) data decoding and interpretation procedures, and 4) mechanisms to facilitate better training and guidance to a broad user group. Seven key recommendations, which were ranked in order of importance during the last day of the workshop are listed below. 1. Forums should be developed to facilitate the exchange of information among users and industry: a) On-line forums that not only provide information on specific instruments and technologies, but also provide an avenue for the exchange of user experiences with various instruments (i.e. problems encountered, cautions, tips, advantages, etc). (see References for manufacturer websites with links to application and technical forums at end of report) b) Regional training/meetings for operational managers to exchange ideas on methods for measuring currents and evaluating data. c) Organize mini-meetings or tutorial sessions within larger conference venues. 2. A committee of major stakeholders should be convened to develop common standards (similar to the Institute of Electrical and Electronics Engineers (IEEE) committee) that enable users to switch sensors without losing software or display capabilities. (pdf contains 28 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Applications of in situ Fluorometers in Nearshore Waters" was held in Cape Elizabeth, Maine, February 2-4,2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), one of the ACT partner organization. The purpose of the workshop was to explore recent trends in fluorometry as it relates to resource management applications in nearshore environments. Participants included representatives from state and federal environmental management agencies as well as research institutions, many of whom are currently using this technology in their research and management applications. Manufacturers and developers of fluorometric measuring systems also attended the meeting. The Workshop attendees discussed the historical and present uses of fluorometry technology and identified the great potential for its use by coastal managers to fulfill their regulatory and management objectives. Participants also identified some of the challenges associated with the correct use of Fluorometers to estimate biomass and the rate of primary productivity. The Workshop concluded that in order to expand the existing use of fluorometers in both academic and resource management disciplines, several issues concerning data collection, instrument calibration, and data interpretation needed to be addressed. Participants identified twelve recommendations, the top five of which are listed below: Recommendations 1) Develop a "Guide" that describes the most important aspects of fluorescence measurements. This guide should be written by an expert party, with both research and industry input, and should be distributed by all manufacturers with their instrumentation. The guide should also be made available on the ACT website as well as those of other relevant organizations. The guide should include discussions on the following topics: The benefits of using fluorometers in research and resource management applications; What fluorometers can and cannot provide in terms of measurements; The necessary assumptions required before applying fluorometry; Characterization and calibration of fluorometers; (pdf contains 32 pages)
Resumo:
HIGHLIGHTS FOR FY 2005 1. Assisted with a study to assess hurricane impacts to Gulf sturgeon critical foraging habitat. 2. Documented Gulf sturgeon marine movement and habitat use in the Gulf of Mexico. 3. Documented Gulf sturgeon spawning with the collection of fertilized eggs in the Apalachicola River, Florida. 4. Documented Gulf sturgeon spawning with the collection of fertilized eggs in the Yellow River, Florida. 5. Assisted with benthic invertebrate survey at Gulf sturgeon marine foraging grounds. 6. Implemented Gulf Striped Bass Restoration Plan by coordinating the 22nd Annual Morone Workshop, leading the technical committee, transporting broodfish, and coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system. 7. Over 87,000 Phase II Gulf striped bass were marked with sequential coded wire tags and stocked in the Apalachicola River. Post-stocking evaluations were conducted at 45 sites in the fall and spring and 8 thermal refuges in the summer. 8. Completed fishery surveys on 4 ponds on Eglin AFB totaling 53 acres, and completed a report with recommendations for future recreational fishery needs. 9. Completed final report for aquatic monitoring at Eglin AFB from 1999 to 2004. 10. Completed a field collection of the endangered Okaloosa darter to be incorporated into a status review to be completed in FY06. 11. Provided technical assistance to the Region 4 National Wildlife Refuge (NWR) program on changes to the fishery conservation targets for the region. Also provided technical assistance to four NWRs (i.e., Okefenokee NWR, Banks Lake NWR, St. Vincent NWR, and St. Marks NWR) relative to hurricanes and recreational fishing. 12. A draft mussel sampling protocol was tested in wadeable streams in Northwest Florida and southwest Georgia, and an associated field guide, poster, and Freshwater Mussel Survey Protocol and Identification workshop were completed in FY05. 13. Implemented recovery plan and candidate conservation actions for 14 listed and candidate freshwater mussels in the Northeast Gulf Watersheds. 14. Initiated or completed multiple stream restoration and watershed management projects. A total of 7.5 stream miles were restored for stream fishes, and 11 miles of coastline were enhanced for sea turtle lighting. A total of 630 acres of wetlands and 2,401 acres of understory habitat were restored. 15. Conducted a watershed assessment to develop a threats analysis for prioritizing restoration, protection, and enhancement to natural resources of Spring Creek, Georgia and Canoe Creek, Florida. 16. Continued the formation of an Unpaved Road Interagency Team of Federal, State, and local agencies in Northwest Florida to promote stream protection and restoration from unpaved road sediment runoff. Began the development of a technical committee agreement. 17. Conducted Alabama Unpaved Road Inventory within the Northeast Gulf Ecosystem. Data collection will be completed during FY06. 18. Finalized the development of two North Florida hydrophysiographic regional curves for use by the Florida Department of Transportation (DOT) and others involved with stream restoration and protection. Initiated the development of the Alabama Coastal Plain Riparian Reference Reach and Regional Curves for use by the Alabama Department of Environmental Management (ADEM). 19. Provided technical assistance in collecting data, analysis, and thesis formulation with Troy University, Alabama, to identify the influence of large woody debris in southeastern coastal plain streams. 20. Completed pre- and post-restoration fish community monitoring at several restoration projects including Big Escambia Creek, Magnolia Creek, and Oyster Lake, Florida. 21. Established a watershed partnership for the Chipola River in Alabama and Florida and expanded development and participation in the Spring Creek Watershed Partnership, Georgia. 22. Continued to identify barriers which inhibit the movement of aquatic species within the Northeast Gulf Ecoregion. 23. Completed a report on road crossing structures in Okaloosa darter streams to guide the closure/repair/maintenance of roads to contribute to recovery of the endangered species. In cooperation with Three Rivers RC&D Council, fish passage sites identified in the report were prioritized for restoration. 24. Monitored Aquatic Nuisance Species in the Apalachicola River and tested the sterility of exotic grass carp. 25. Multiple outreach projects were completed to detail aquatic resources conservation needs and opportunities. Participated in National Fishing Week event, several festivals, and school outreach.
Resumo:
Homestead fish culture is a recent innovation for mass production of fish at backyard in Nigeria. The processes of pond construction often have resulted in soil disturbances, vegetation losses, and creation of new aquatic environment. The paper discusses homestead ponds in Nigeria, their potential impact on the environment which includes erosion, over flooding, pest and disease, accident risk, undesired fossil fuel production, vegetation destruction and fish genetic conservation, strategies for environmental management in relation to pond construction are suggested
Resumo:
The proposed EC Water Framework Directive (WFD)incorporates some new concepts in the field of water protection. Most of these concepts rely on the use of applied ecology of water systems. The expected improvement of environmental management is very new in this context. The new WFD will allow the checking of the eco-epidemiological results of several human impacts on aquatic ecosystems, such as toxic pollution and habitat modification. This paper intends to show some consequences of the WFD in the field of ecotoxicology.
Resumo:
Ninety (90) hatchery bred fingerlings of Clarias gariepinus (mean weight: 0.96 ± 0.1g) were randomly placed in 15 plastic baths (25 litres each) at the Research laboratory and were exposed to different concentrations of oil products to determine their effects on the fish, to facilitate inferential deductions that will enhance effective aquatic environmental management. Three (3) replicate basins of 5 experimental treatments (crude oil, petrol oil, kerosene oil, engine oil and control) were used at a concentration of 1.25ml. L-1. The control experiment was devoid of oil treatment. Six (6) fingerlings were placed in each replicate basin, flooded with 20 litres of clean tap water and fed with nutrafin cichilid food, 2 times daily at 3% body weight. The results showed that the feeding behaviour and swimming performances of fish were reduced after 24 hours of the addition of the various oil pollutants. Mortality of fingerlings in the oiled basins increased as the hours of exposure increased (i.e. 24, 48, 72 and 96 hours). Recovery was not immediate in the treated basin while surviving fingerlings in the control basins grew up to post-fingerlings after 90 days (3 months). There were significant differences (P<0.01 and P<0.05) in the effect of crude oil and the petroleum products on the mortality rate of C. gariepinus when exposed to oil pollutants at 1.25ml. L-1 concentration
Resumo:
It has been predicted that the global demand for fish for human consumption will increase by more than 50% over the next 15 years. The FAO has projected that the increase in supply will originate primarily from marine fisheries, aquaculture and to a lesser extent from inland fisheries, but with a commensurate price increase. However, there are constraints to increased production in both marine and inland fisheries, such as overfishing, overexploitation limited potential increase and environmental degradation due to industrialization. The author sees aquaculture as having the greatest potential for future expansion. Aquaculture practices vary depending on culture, environment, society amd sources of fish. Inputs are generally low-cost, ecologically efficient and the majority of aquaculture ventures are small-scale and family operated. In the future, advances in technology, genetic improvement of cultured species, improvement in nutrition, disease management, reproduction control and environmental management are expected along with opportunities for complimentary activities with agriculture, industrial and wastewater linkages. The main constraints to aquaculture are from reduced access to suitable land and good quality water due to pollution and habitat degradation. Aquaculture itself carries minimal potential for aquatic pollution. State participation in fisheries production has not proven to be the best way to promote the fisheries sector. The role of governments is increasingly seen as creating an environment for economic sectors to make an optimum contribution, through support in areas such as infrastructure, research, training and extension and a legal framework. The author feels that a holistic approach integrating the natural and social sciences is called for when fisheries policy is being examined.
Resumo:
This is the report on the Leven estuary project: Fisheries Department final report produced by the Environment Agency North West in 1997. This report contains information about Leven estuary, river Leven catchment, river Crake catchment and the Ulverston Discharges. The Leven estuary is characterised by being very shallow, and shares the extremely variable tides and currents that characterize the whole of Morecambe Bay. There was little detailed knowledge of the impact on the Leven estuary, and particularly its fisheries, of the discharges from Ulverston. There has been some concern expressed by the lave netsmen and the general public about the possible harmful effects of the effluents on the biology of the estuary. In the absence of a definite strategy for the protection and management of the estuary was born this project. The project involves water quality monitoring, effluent and estuary toxicity testing, tracking of effluent plumes, and salmonid tagging and tracking. The entire project commenced in June 1995 and was expected to reach a conclusion in March 1997. The information gained from the project was expected to contribute to the creation of a 'mixing zone' for the effluent, and to improve the environmental management of the estuary and protection of its fishery.