5 resultados para Multivariate measurement model
em Aquatic Commons
Resumo:
A workshop was convened by the MODEL Task Team and held June 23-28, 1996, in Nemuro, Japan, to develop the modeling requirements of the PICES Climate Change and Carrying Capacity (CCCC) Program. It was attended by over 40 scientists from all member nations of PICES. The principal objectives of the workshop were to • review the roles and limitations of modeling for the CCCC program; • propose the level of modeling required; and • provide a plan for how to promote these modeling activities. Secondary activities at the workshop included organisational meetings of the Regional comparisons (REX) and Basin-scale experiment (BASS) Task Teams, and a symposium by Japan-GLOBEC on “Development and application of new technologies for measurement and modeling in marine ecosystems.” This report serves as a record of the proceedings of this workshop. (PDF contains 89 pages)
Resumo:
The time series of abundance indices for many groundfish populations, as determined from trawl surveys, are often imprecise and short, causing stock assessment estimates of abundance to be imprecise. To improve precision, prior probability distributions (priors) have been developed for parameters in stock assessment models by using meta-analysis, expert judgment on catchability, and empirically based modeling. This article presents a synthetic approach for formulating priors for rockfish trawl survey catchability (qgross). A multivariate prior for qgross for different surveys is formulated by using 1) a correction factor for bias in estimating fish density between trawlable and untrawlable areas, 2) expert judgment on trawl net catchability, 3) observations from trawl survey experiments, and 4) data on the fraction of population biomass in each of the areas surveyed. The method is illustrated by using bocaccio (Sebastes paucipinis) in British Columbia. Results indicate that expert judgment can be updated markedly by observing the catch-rate ratio from different trawl gears in the same areas. The marginal priors for qgross are consistent with empirical estimates obtained by fitting a stock assessment model to the survey data under a noninformative prior for qgross. Despite high prior uncertainty (prior coefficients of variation ≥0.8) and high prior correlation between qgross, the prior for qgross still enhances the precision of key stock assessment quantities.
Resumo:
Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis.
Resumo:
We present a growth analysis model that combines large amounts of environmental data with limited amounts of biological data and apply it to Corbicula japonica. The model uses the maximum-likelihood method with the Akaike information criterion, which provides an objective criterion for model selection. An adequate distribution for describing a single cohort is selected from available probability density functions, which are expressed by location and scale parameters. Daily relative increase rates of the location parameter are expressed by a multivariate logistic function with environmental factors for each day and categorical variables indicating animal ages as independent variables. Daily relative increase rates of the scale parameter are expressed by an equation describing the relationship with the daily relative increase rate of the location parameter. Corbicula japonica grows to a modal shell length of 0.7 mm during the first year in Lake Abashiri. Compared with the attain-able maximum size of about 30 mm, the growth of juveniles is extremely slow because their growth is less susceptible to environmental factors until the second winter. The extremely slow growth in Lake Abashiri could be a geographical genetic variation within C. japonica.
Resumo:
We have formulated a model for analyzing the measurement error in marine survey abundance estimates by using data from parallel surveys (trawl haul or acoustic measurement). The measurement error is defined as the component of the variability that cannot be explained by covariates such as temperature, depth, bottom type, etc. The method presented is general, but we concentrate on bottom trawl catches of cod (Gadus morhua). Catches of cod from 10 parallel trawling experiments in the Barents Sea with a total of 130 paired hauls were used to estimate the measurement error in trawl hauls. Based on the experimental data, the measurement error is fairly constant in size on the logarithmic scale and is independent of location, time, and fish density. Compared with the total variability of the winter and autumn surveys in the Barents Sea, the measurement error is small (approximately 2–5%, on the log scale, in terms of variance of catch per towed distance). Thus, the cod catch rate is a fairly precise measure of fish density at a given site at a given time.