2 resultados para Model risk
em Aquatic Commons
Resumo:
Nowadays, risks arising from the rapid development of oil and gas industries are significantly increasing. As a result, one of the main concerns of either industrial or environmental managers is the identification and assessment of such risks in order to develop and maintain appropriate proactive measures. Oil spill from stationary sources in offshore zones is one of the accidents resulting in several adverse impacts on marine ecosystems. Considering a site's current situation and relevant requirements and standards, risk assessment process is not only capable of recognizing the probable causes of accidents but also of estimating the probability of occurrence and the severity of consequences. In this way, results of risk assessment would help managers and decision makers create and employ proper control methods. Most of the represented models for risk assessment of oil spills are achieved on the basis of accurate data bases and analysis of historical data, but unfortunately such data bases are not accessible in most of the zones, especially in developing countries, or else they are newly established and not applicable yet. This issue reveals the necessity of using Expert Systems and Fuzzy Set Theory. By using such systems it will be possible to formulize the specialty and experience of several experts and specialists who have been working in petroliferous areas for several years. On the other hand, in developing countries often the damages to environment and environmental resources are not considered as risk assessment priorities and they are approximately under-estimated. For this reason, the proposed model in this research is specially addressing the environmental risk of oil spills from stationary sources in offshore zones.
Resumo:
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.