7 resultados para Mitotic Catastrophe
em Aquatic Commons
Resumo:
Studies were undertaken to produce genetic clones derived from all homozygous mitotic gynogenetic individuals in rohu, Labeo rohita Ham. ln view of this, attempts were made to interfere with the normal functioning of the spindle apparatus during the first mitotic cell division of developing eggs using heat shocks, there by leading to the induction of mitotic gynogenetic diploids in the F1 generation. Afterwards, viable mitotic gynogenetic alevins were reared and a selected mature female fish was used to obtain ovulated eggs which were fertilized later with UV-irradiated milt. Milt was diluted with Cortland’s solution and the sperm concentration was maintained at 10⁸/ml. The UV-irradiation was carried out for 2 minutes at the intensity of 200 to 250 µW/cm² at 28± 1°C. The optimal heat shock of 40°C for 2 minutes applied at 25 to 30 minutes a.f. was used to induce mitotic gynogenesis in first (F1) generation and at 3 to 5 minutes a.f. to induce meiotic gynogenesis in the second (F2) generation. The results obtained are presented and the light they shed on the timing of the mitotic and meiotic cell division in this species is discussed.
Resumo:
The alkaloid drug colchicine is a mitotic inhibitor. The results of this study show that colchicine influence the normal functioning of the mitotic process in Sarotherodon galilaeus, S. melanotheron and the hybrid S. galilaeus, X S. melanotheron leading to the production of unusual chromosomal events such as anaphase bridges, laggards and polyploid cells. These unusual events could have serious genetic implications in the area of variability of the chromosome number. The use of colchicine also produces results with consistent karyotypes and better morphology as well as providing detailed information on the behaviour of the chromosome of the early life of fish. The knowledge of such information will be of great use in cytotaxonomy, fish breeding and in studying the effects of sub-lethal levels of water pollutants on fish
Resumo:
Triploid was induced in African Catfish (Heterobranchus longifilis) by cold shocking activated eggs at 5 degree C for forty minutes starting 3-4 minutes after fertilization. Triploidy was confirmed from mitotic chromosomes prepared from embryo which showed 100% triploidy in the cold shocking treatment and 100% diploidy in the control treatment
Resumo:
Proclamation of a Great Galapagos Marine Reserve. Recovery of the Marine Iguana Population After the El Niño Catastrophe. The Española Tortoises - a Very Special Case. A Botanical Workshop at the Darwin Station. The Campaign to Save the Hawaiian Petrel. Visitors to the Galapagos National Park. Re-opening of the Cristobal Bonifaz Building. Joint Operational Planning. Meeting of the Permanent Commission for the South Pacific. Galapagos Conservationists Receive WWF Award.
Resumo:
Human ingenuity has made it possible to advent the chromosome manipulation techniques to produce individuals with differing genomic status in a number of fish using various causal agents such as physical shocks (temperature or hydrostatic pressure), chemical (endomitotics) and anesthetic treatments either to suppress the second meiotic division shortly after fertilization of eggs or to prevent the first mitotic division shortly prior to mitotic cleavage formation. This results in the induction of polyploidy (triploidy and tetraploidy), gynogenesis (both meiotic and mitotic leading to clonal lines) and androgenesis in fish population. The rationale for the induction of such ploidy in fish has been its potential for generating sterile individuals, rapidly inbred lines and masculinized fish, which could be of benefit to fish farming and aquaculture. In this paper, these are critically reviewed and the implication of recently developed chromosome manipulation techniques to various fin fishes is discussed.
Resumo:
An experiment was conducted to optimize the procedure of gynogenesis in African catfish, Clarias gariepinus by suppressing meiotic and mitotic cell divisions in fertilized eggs. Gynogensis was conducted by fertilizing normal eggs with UV-irradiated sperm followed by either heat or cold shocking Irradiation of spermatozoa was given for a duration of 1 min and the eggs were fertilized in vitro. Cold shock at a temperature of 3± 1°C for a duration of 30 and 60 min and heat shock at a temperature of 39± 1°C for a duration of 1 and 2 min was applied to induce diploidy. Higher percentage of hatching (68.66) was observed for meiotic gynogens at a shock temperature of 39± 1°C for a duration of 1 min, 5 min after fertilization (af). Higher percentage of mitotic gynogenetic induction (15.33) was observed at a temperature shock of 39± 1°C for a duration of 1 min, 30 min af.
Resumo:
The present investigation is to assess the genotoxic potential of nickel chloride and zinc sulphate on gill cells of silver carp Hypophthalmichthys molitrix. Fishes were exposed in sublethal concentration of nickel chloride 5. 7 mg/1 and zinc sulphate 6.8 mg/1, and sampled at 10, 20 and 30 days. Nickel chloride and zinc sulphate treated fishes exhibited an apparent increase in the aberration frequency and a decrease in the mitotic index as compared to control. Acentric fragment, chromatid break, endoreduplication, chromatid gap, centromeric fusion, ploidy, sticky plate, dicentric chromosome, clumping and partial sticky plates were some of the abnormalities observed. The chromosomal aberrations in the treated fishes were significant compared to control.